
Show series [sin(n)]/n converges? - Physics Forums
2008年4月14日 · sin(n)/n already looks a lot like (-1)^n/n so I tried to figure out a way to get (-1)^n to alternate like sin(n) does. My first impulse was to use (-1)^(n/pi) but that leads to a problem …
What is the Convergence of |Sin(n)|? - Physics Forums
2011年7月3日 · I am trying to see if a_n:={|Sin(n)|}, with n=1,2,... and | . | standard absolute value, is convergent. I know the set {k.pi}, k=1,2,... is dense in [0,1] (pi is equidistributed mod1) , and …
How to write sin(n*pi/2) as an expression (-1)^f(n)? - Physics Forums
2024年2月18日 · I could summarize this as ##\frac{1}{n\pi}## for ##n=1, 5, 9, \ldots## ##\frac{-1}{n\pi}## for ##n=3, 7, 11, \ldots## and ##0## for all other ##n##.
Proving Convergence of an = [sin(n)]/n w/ Cauchy Theorem
2014年10月23日 · a n = [sin(n)]/n Prove that this sequence converges using Cauchy theorem Homework Equations Cauchy theorem states that: A sequence is called a Cauchy theorem if …
Limits of Sin(n)/n: Solving for N - Physics Forums
2011年3月9日 · lim (sin(n)/n)=0. The instruction say I can only use the definition of limit and no additional theorems. So the first thing I should do is figure out if l sin(n)/n l < epsilon, find out …
Simplifying Trigonometric Functions with Arbitrary n - Physics …
2012年2月28日 · ok i know that sin n*(pi/2) = 1 if n=1,5,9,13... = -1 if n=3,7,11,15... = 0 if n is even cos n*(pi/2) = 0 if n is odd = -1 if n=0,4,8,12 = 1 if n=2,6,10,14... is there a simpler way of …
Limit of sin(n)^n and working set - Physics Forums
2013年10月11日 · How to prove that the limit \\lim_{n\\to\\infty}sin(n)^n n integer towards infinity does not exist ? If n is a real then it's obvious since we can take n=Pi/2*k k being an integer. …
Show series [sin(n)]/n converges? | Page 2 - Physics Forums
2008年4月14日 · The product of a sequence with bounded partial sums (sin(n), use a trig identity) and a function of bounded variation (1/n), converges as a series. This is proved using Abel's …
Calculating Supremum of sin n for Positive Integers - Physics Forums
2005年4月27日 · This means that for any positive integer n, sin n will lie between -1 and 1. Therefore, the supremum of sin n cannot be larger than 1. Next, we can use the definition of …
Is Sin n a Non-Monotonic Function? - Physics Forums
2008年10月12日 · Yes, sin(x) is a non-monotonic function. If You intended n to be an integer, sin n is still non-monotonic because sin(0)= 0 and sin(1)= .8414... so it is increases from 0 to 1 but …