
采用 ALSTM 模型的温度和降雨关联预测研究论文学习记录-CSDN …
2022年9月24日 · 为了准确和及时预测局部区域的降雨及温度,提出了一种基于 Attention 和 LSTM 组合模型 ( ALSTM) 的 关联多值 预测算法。 该算法利用天气时间序列中 的前期数据,对下一小时的降雨量和温度进行关联预测,以此实现对天气要素的多值预测。 该算法首先对输入数据进行归一化处理; 然后利用数据对ALSTM 模型进行训练; 最后将训练好的模型用于多值预测。 涉及:LSTM Attention机制 多变量. ③将两个或多个LSTM模型进行 堆叠组合,将前一个模型的输出作为下 …
Qlib on MacOS:从零到实现ALSTM Benchmark并调参 - 知乎
跑完原生的ALSTM Benchmark发现不考虑交易成本的净值曲线居然近似相当于基准的沪深300指数(即几乎无超额收益),而考虑了交易成本的超额收益居然是负的,观察前面模型训练的每个epoch的输出发现train set的loss一直在下降,而valid的loss却缓慢上升。
每日读论文:Adv-ALSTM - 知乎 - 知乎专栏
1.预测模型:ALSTM-Attentive LSTM. 先看整体结构: 和标准的lstm相比,在上面的倒数第二层增加了“ temporal attention layer ”,也就是说,在预测前,综合使用了所有时刻隐藏层,并给它们不同的权重。这和之前看过的 DARNN 的时态注意力机制并没什么不同。 具体的做法:
ALSTM: An Attention-based LSTM Model for Multi-Scenario …
In this paper, we propose ALSTM model, which is based on the Long Short Term Memory (LSTM) recurrent neural network and the attention mechanism for multi-scenario bandwidth prediction. Firstly, we conduct the bandwidth trajectories feature analysis, and then we adopt the Support Vector Machine (SVM) to classify scenarios based on the bandwidth ...
Adv-ALSTM手动复现——基于对抗学习的注意力LSTM预测股票涨 …
其实本文模型的原型是ALSTM (Attentive LSTM), 是机器学习选股常见的,也是微软qlib自带的一个baseline,只不过本文作者为了降低模型的过拟合并提高泛化能力,在每一次Iteration里面增添了对抗样本 e_ {adv} 以及对应的损失函数部分。 我对网络的完整架构和单次BP的过程做了手动复现。 由于未参考源代码,或存在部分不妥之处欢迎交流指正。 原论文:《Enhancing Stock Movement Prediction with Adversarial Training》
ALSTM: An attention-based long short-term memory framework …
2020年7月25日 · In this paper, we produce a novel framework (ALSTM) based on the Attention mechanism and Long Short-Term Memory (LSTM), which associates structure learning with parameter learning of first-order logical rules in an end-to …
GitHub - fulifeng/Adv-ALSTM: Code for paper "Enhancing Stock …
To run the proposed Adv-ALSTM, ALSTM, and LSTM on the ACL18 and KDD17 dataset, run the commands in the hyperparameter file.
Attention-Based Long Short-Term Memory Method for Alarm …
This paper proposes a novel attention-based long short-term memory (ALSTM) method for improved design of GC models to diagnose the alarm root-cause and identify the alarm propagation pathways. A novel training strategy is proposed for ALSTM-GC to enhance noise robustness and prevent overfitting.
GitHub - flennerhag/alstm: Adaptive LSTM from Breaking the …
PyTorch implementation of the adaptive LSTM (https://arxiv.org/abs/1805.08574), an extension of the standard LSTM that increases model flexibility through adaptive parameterization. The aLSTM converges faster than the LSTM with superior generalizing performance.
ClementPerroud/Adv-ALSTM: Adversarial Training with Attention LSTM - GitHub
The project is all about reproducing a working version of Adversarial Attention Based LSTM for TensorFlow 2. This new version is available in AdvALSTM.py with the object AdvLSTM. More details of my version below. I finally updated the author's code for it to run with TensorFlow 2.x and compare my results with his.
- 某些结果已被删除