
20 Accumulated Local Effects (ALE) – Interpretable Machine …
Accumulated local effects (Apley and Zhu 2020) describe how features influence the prediction of a machine learning model on average. ALE plots are a faster and unbiased alternative to partial dependence plots (PDPs).
机器学习可解释性(一) —— 累积局部效应图(ALE)_ale图-CSDN博客
2021年8月28日 · 其中,累积局部效应(Acumulated Local Effects,简称ALE)方法是一种常用的技术,可以帮助我们解释和可视化连续特征对目标值的影响。以上代码将生成一个带有ALE曲线的图形,其中x轴表示连续特征的取值范围,y轴表示ALE值。
Accumulate Local Effects (ALE) Documentation — Scikit-Explain …
Accumulate Local Effects (ALE) Documentation This notebook demonstrates how to use skexplain to compute 1D or 2D ALE and plot the results. ALE can be used to assess feature importance, feature attributions, and feature interactions. The concept and calculation of ALE is too much to cover in this notebook.
ale - GitHub Pages
This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference.
Accumulated local effects - Wikipedia
Accumulated local effects (ALE) is a machine learning interpretability method. [1] ALE uses a conditional feature distribution as an input and generates augmented data, creating more realistic data than a marginal distribution. [2] It ignores far out-of-distribution (outlier) values. [1] .
Statistical inference using machine learning and classical …
2023年10月15日 · Abstract: Accumulated Local Effects (ALE) is a model-agnostic approach for global explanations of the results of black-box machine learning (ML) algorithms. There are at least three challenges with conducting statistical inference based on ALE: ensuring the reliability of ALE analyses, especially in the context of small datasets; intuitively ...
ALE累积局部效应图可视化算法的简介 - CSDN博客
ALE累积局部效应图是一种用于机器学习模型解释的可视化方法,它通过计算局部效应并消除变量间的相关性干扰,揭示特征对预测结果的真实影响。 本文介绍了ALE的原理、应用,包括研究单一特征和联合效应,并提到了alepython工具包的使用及在titanic数据集上的案例应用。 XAI之ALE:ALE累积局部效应图可视化算法的简介 (原理/意义/优缺点/应用)、常用工具包、案例应用之详细攻略. 综上所述,本文介绍了如何使用R语言中的 累积局部效应 (ALE)方法解释连续特 …
使用机器学习和基于累积局部效应 (ALE) 的经典技术进行统计推 …
累积局部效应 (ALE) 是一种与模型无关的方法,用于对黑盒机器学习 (ML) 算法的结果进行全局解释。 基于 ALE 进行统计推断至少面临三个挑战: 确保 ALE 分析的可靠性,特别是在小数据集的情况下;在机器学习中直观地表征变量的整体效果;并从 ML 数据分析中做出可靠的推论。 为此,我们引入了使用 ALE 进行统计推断的创新工具和技术,建立了适合数据集大小的自举置信区间,并引入了 ALE 效应大小测量,直观地表明对结果变量尺度和标准化尺度的影响。 此外,我们还演 …
Accumulated Local Effects (ALE): Guide to Model Interpretability
2024年6月18日 · Accumulated Local Effects (ALE) is one of the effective methods for interpreting machine learning models. This blog post will delve into what ALE is, why it’s important,...
5.3 Accumulated Local Effects (ALE) Plot
5.3 Accumulated Local Effects (ALE) Plot. Accumulated local effects 31 describe how features influence the prediction of a machine learning model on average. ALE plots are a faster and unbiased alternative to partial dependence plots (PDPs).