
Getting Started with the did Package • did - Brantly Callaway
The did package can deliver disaggregated group-time average treatment effects as well as event-study type estimates (treatment effects parameters corresponding to different lengths of exposure to the treatment) and overall treatment effect estimates.
DID新进展:异质性多期DID估计的新方法-csdid - 知乎
双重倍差法 (Difference-in-Differences,DID),是目前实证分析中用于识别因果关系的流行方法之一。 标准的 DID 模型将样本分为两组:实验组和对照组;将时间分为两个阶段:政策发生前和政策发生后。 所有的实验组样本都在同一时间点受到政策冲击。 随着 DID 方法的拓展,许多实证研究将其拓展为多期 DID,即实验组并非在同一时点遭受政策冲击。 但是,自 2019 年来,不少学者纷纷指出这种多期 DID 有可能会产生 有偏估计 (Athey and Imbens,2022;Baker et …
Difference-in-Differences with multiple time periods
2021年12月1日 · In this article, we consider identification, estimation, and inference procedures for treatment effect parameters using Difference-in-Differences (DiD) with (i) multiple time periods, (ii) variation in treatment timing, and (iii) when the “parallel trends assumption” holds potentially only after conditioning on observed covariates.
Difference-in-Differences Designs: A Practitioner's Guide
2025年3月18日 · Difference-in-Differences (DiD) is arguably the most popular quasi-experimental research design. Its canonical form, with two groups and two periods, is well-understood. However, empirical practices can be ad hoc when researchers go beyond that simple case. This article provides an organizing framework for discussing different types of DiD designs and their associated DiD estimators. It ...
Callaway and Sant’Anna (2020) propose a transparent way to proceed with this insight in DiD setups with multiple time periods. Today’s talk is all about how to implement it with our Stata command, csdid. csdid accommodates both panel data and repeated cross section data. For simplicity, I’ll focus on the panel data case. f(Yi,1, Yi,2, . . .
DID偏误问题:多时期DID的双重稳健估计量(下)-csdid - 知乎
与其它多时期 DID 估计的纠偏估计命令类似,csdid 命令也是将样本分为不同的子组 (group),分别估计不同组别的 ATT(g),再通过特定策略将不同组别的 ATT(g) 加总算出样本期的 ATT。加总策略原则同样也是对那些可能存在偏误组的 ATT(g),降低它们的加总权重。
did (Callaway and Sant’Anna 2021)
The did R package was developed by Brantly Callaway and Pedro Sant’Anna to accompany their 2021 paper Difference-in-Differences with multiple time periods (henceforth CS21). CS21 provides an extremely flexible framework for estimating DiD-style regressions and can yield valid estimands in cases where other packages/routines struggle.
DID新进展:异质性多期DID估计的新方法-csdid - CSDN博客
2022年10月2日 · 双重倍差法 (Difference-in-Differences,DID),是目前实证分析中用于识别因果关系的流行方法之一。 标准的 DID 模型 将样本分为两组:实验组和对照组;将时间分为两个阶段:政策发生前和政策发生后。 所有的实验组样本都在同一时间点受到政策冲击。 随着 DID 方法的拓展,许多实证研究将其拓展为多期 DID,即实验组并非在同一时点遭受政策冲击。 但是,自 2019 年来,不少学者纷纷指出这种多期 DID 有可能会产生有偏估计 (Athey and …
DID前沿: 5种方法估计事件研究的因果效应, 并使用绘制系数和置信 …
2021年12月25日 · 多期DID方法的最新进展如何? 这个模拟示例说明了如何使用一系列方法估计事件研究的因果效应,并使用 event_plot 命令绘制系数和置信区间。在Stata上运行过代码,没问题的。 您将需要以下命令: did_imputation(Borusyak 等人,2021 年):在 SSC 上可用
Callaway and Sant’anna(2021)估计量补充 - 哔 ... - 哔哩哔哩
2023年11月13日 · 在系列视频“交错双重差分(staggered DID)的stata估计”里,我以面板数据为例,讲解了如何使用csdid命令在Stata实现Callaway and Sant'anna (2021)估计量。 以下补充(1)csdid在重复截面(repeated cross section)数据里的应用,以及(2)面板数据和重复截面数据条件下,csdid分别应该如何选取控制变量。 (1)csdid在重复截面(repeated cross section)数据里的应用。 沿用“交错双重差分(staggered DID)的stata估计”里的数据和例 …