
How do I find the value of csc 225? - Socratic
2015年9月11日 · -sqrt2 csc 225= csc(180+45)= -csc45= -sqrt2. How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle?
How do you evaluate #csc(-225)#? - Socratic
2016年9月13日 · sqrt2/2 csc (-225) = 1/(sin (-225). Find sin (-225) Trig table and unit circle --> sin (-225) = sin (-45 - 180) = - sin (-45) = sin (45) = sqrt2/2
How do you find the 6 trigonometric functions for 225 degrees?
2015年8月23日 · Find 6 trig functions of 225 deg sin 225 = sin (45 + 180) = - sin 45 = -sqrt2/2 cos 225 = cos (45 + 180) = - cos 45 = -sqrt2/2 tan 225 = sin 225/cos 225 = 1 cot 225 = 1/tan 225 = …
How would you find the exact value of the six trigonometric
2016年11月21日 · sin(225^@)= -1/sqrt(2)color(white)("XXX")csc(225^@)=-sqrt(2) cos(225^@)= -1/sqrt(2)color(white)("XXX")sec(225^@)=-sqrt(2) tan(225^@)=+1color(white)("XXXX")csc(225 ...
Can you help evaluate this equation? sin^2 (-420°)+ cot (270°) …
2017年1月17日 · Use . #sin (-a) = -sina, sin (360^o+a)=sina, cot(180^o+a)=tan a and csc(180+a)=-csca#. Now, the given expression is
Trigonometric Functions of Any Angle - Trigonometry - Socratic
How do you evaluate cos [csc (-2.345)] to four significant digits using a calculator set in radian mode? How do you use the calculator to evaluate #cot 0.942 #? How do you use the …
How do i get the exact value of sec 225°? - Socratic
cos 225 = cos (180 + 45) = cos 180.cos 45 - sin 180.sin 45. Since: sin 180 = 0; cos 180 = -1, ...
P is a point on the terminal side of θ in standard position
2015年5月8日 · If O is the origin, the angle (Ox, OP) is (5pi)/4 or 225 deg. sin 225 = sin (180 + 45) = -sin 45 = -(sqr2)/2 cos 225 = cos (180 + 45) = -cos 45 = -sqr2/2 tan 225 = tan 45 = 1 cot 225 …
Logarithm-- Inverse of an Exponential Function - Socratic
The best videos and questions to learn about Logarithm-- Inverse of an Exponential Function. Get smarter on Socratic.
How do you find the six trigonometric functions of 315 degrees?
2015年7月18日 · csc = 1/sin = - sqrt2. Answer link. Dean R. May 11, 2018 This is one of the usual suspects, #-45^ circ ...