
What is the derivative of #y = x^cos(x)#? - Socratic
2017年1月15日 · dy/dx = x^cosx(-sinxlnx + cosx/x) y = x^cosx Take the natural logarithm of both sides. lny = ln(x^cosx) Use the logarithm law for powers, which states that loga^n = nloga lny = …
What is the derivative of #cos^-1(x)#? - Socratic
2017年2月7日 · d/dxcos^(-1)(x) = -1/sqrt(1 -x^2) When tackling the derivative of inverse trig functions. I prefer to rearrange and use Implicit differentiation as I always get the inverse …
What is the derivative of? : d/dx cos(ax) | Socratic
2017年11月24日 · d/dx cos(ax) = -asin(ax) Using the chain rule, we have: d/dx cos(ax) = -sin(ax) d/dx(ax) " " = -asin(ax)
If y = cosx^3sin^2(x^5), what is dy/dx? - Socratic
2017年11月19日 · See explanation According to the product rule, d/dx[f(x)*g(x)]=f(x)*g'(x)+g(x)*f'(x), where f(x) = cos(x^3) and g(x) = sin^2 (x^5) Therefore (be …
How do you find the derivative of y=cos (x) from first ... - Socratic
2014年8月22日 · Using the definition of a derivative: dy/dx = lim_(h->0) (f(x+h)-f(x))/h, where h = deltax We substitute in our function to get: lim_(h->0) (cos(x+h)-cos(x))/h Using the Trig …
Differentiate cos(x^2+1) using first principle of derivative
2018年2月25日 · -sin(x^2+1)*2x d/dx cos(x^2+1) For this problem, we need to use chain rule, as well as the fact that the derivative of cos(u) = -sin(u). Chain rule basically just states that you …
What is the derivative of (cosx)^x? - Socratic
2018年5月29日 · We use a technique called logarithmic differentiation to differentiate this kind of function.. In short, we let #y = (cos(x))^x#,
Hw do you prove that the d/dx (secx) = sec x tan x - Socratic
2017年10月22日 · STEP 1: # sec x = 1 / cos x # STEP 2: Use the quotient rule to find the derivative of # Sec x = 1 / cos x # # (d/dx 1 * (cos x) - d/dx cosx * (1)) / (cosx)^2 #
d/dx(tan^-1(cosx/1+sinx))? - Socratic
2018年6月23日 · We know that, #color(red)((1)sin(pi/2-theta)=costheta and cos(pi/2-theta)=sintheta# #color(blue)((2)sin2alpha=2sinalpha cosalpha and 1+cos2alpha=2cos^2alpha#
What is the derivative of #cos(xy)#? - Socratic
2017年1月13日 · d/(dx) cos(xy) = -(y+x(dy)/(dx))sin(xy) Use the chain rule: d/(dx) cos(xy) = -sin(xy) *d/(dx) (xy) then the product rule: -sin(xy) *d/(dx) (xy) = -sin(xy) (y+x(dy)/(dx))