
Robert H Deeb, MD - Henry Ford Health - Detroit, MI
Dr. Deeb is committed to providing the highest quality patient care in cosmetic and reconstructive surgery of the face, head and neck including a special interest in cosmetic and revision rhinoplasty, middle-eastern rhinoplasty, African American rhinoplasty, rejuvenation of the face, eyelid surgery, reconstructive surgery, and skin cancer surgery.
Dr. Robert H. Deeb MD - US News Health
Dr. Robert H. Deeb is an ENT-otolaryngologist in Detroit, Michigan and is affiliated with multiple hospitals in the area, including John D. Dingell VA Medical Center and Henry Ford Hospital. He...
Dependence of Ge/Si Avalanche Photodiode Performance on the …
2023年7月15日 · In this work, we focus on investigating the performance characteristics of SACM Ge-on-Si APDs, specifically their dependence on the thicknesses of the multiplication and absorption layers. Breakdown voltage, multiplication gain, bandwidth, responsivity, and quantum efficiency are among the performance parameters examined.
ibrahim aldeeb - Google Scholar
in vitro anti-angiogenic properties of ethanolic crude extract of Vernonia amygdalina. Ibrahim Al-deeb, Julia Joseph, Amin Malik Shah Abdul Majid, Aman Shah Abdul ...
Sara El-Deeb - Google Scholar
Professor of Marketing, German University in Cairo. International Journal of Social Media and Interactive Learning Environments … Computer-Generated Imagery Influencer Marketing—Which Ends of the...
GitHub - mzjb/DeepH-pack: Deep neural networks for density …
DeepH-pack is the official implementation of the DeepH (Deep H amiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS soon.
Xiaoxun-Gong/DeepH-E3 - GitHub
This code is the implementation of the DeepH-E3 method described in the paper General framework for E (3)-equivariant neural network representation of density functional theory Hamiltonian (arXiv:2210.13955). You can find demo input files and instructions in these repositories: Dataset 1, Dataset 2 and Dataset 3.
DeepH新进展 | 清华大学徐勇、段文晖研究组在第一性原理计算与 …
在最新的工作中,徐勇、段文晖研究组提出了xDeepH(extended DeepH)方法,用于学习磁性材料的DFT哈密顿量对原子结构和磁结构的依赖关系,并高效预测其电子结构与物性。 将物理先验知识融入神经网络架构设计,对深度学习的性能至关重要。 DFT哈密顿量对原子结构和磁结构的依赖关系,在对称操作下(如旋转和时间反演)具有等变性。 为此,该研究提出了一种拓展的等变神经网络,能考虑电子自旋和轨道自由度,使得神经网络保持在欧几里得群和时间反演操作下的对 …
DeepH-pack 使用与安装指南 - CSDN博客
2024年8月26日 · DeepH-pack 是一个专为基于局部坐标和基变换预测密度泛函理论 (DFT)哈密顿矩阵设计的深度神经网络应用包。 以下是项目的主要目录结构概述: ./ 根目录,包含了项目 …
DeepH-pack’s documentation — DeepH-pack 0.0.1
DeepH-pack is a package for the application of deep neural networks to the prediction of density functional theory (DFT) Hamiltonian matrices based on local coordinates and basis transformation 1. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA, and will support HONPAS soon.
- 某些结果已被删除