
DSKG: A Deep Sequential Model for Knowledge Graph Completion
2018年10月30日 · In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neural network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset.
nju-websoft/DSKG - GitHub
DSKG: Deep Sequential models for Knowledge Graphs. unpack the data.tar.gz, which includes all of three datasets. You can also directly click runDSKG.ipynb in this page to preview the results …
CCKS2018最佳论文:南京大学提出DSKG—知识图谱补全 - 知乎
2018年8月24日 · 论文:DSKG:一种用于知识图谱补全的深度序列模型(DSKG: A Deep Sequential Model for Knowledge Graph Completion) 摘要:知识图谱(KG)补全的目标是填补知识图谱中缺失的事实,其中每个事实都可表示成一个形式为 (主体, 关系, 客体) 的三元组。 当前的知识图谱补全模型都只能通过三元组中的两个元素(比如主体和关系)来预测剩余第三个元素。 我们在这篇论文中提出了一种新模型,其中使用了专门针对知识图谱的多层循环神经网 …
CCKS 2018 | 最佳论文:南京大学提出 DSKG,将多层 RNN 用于知 …
2018年8月24日 · dskg 不仅能预测实体,而且还能预测整个三元组。为了评估 dskg 在直接预测三元组上的表现,我们构建了一个具有较大窗口的波束搜索器。另外也还有一些能够提升序列预测结果的复杂方法 [8]。
DSKG: A Deep Sequential Model for Knowledge Graph Completion
2018年12月7日 · In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset.
In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset.
DSKG: A Deep Sequential Model for Knowledge Graph
2019年1月1日 · In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG...
论文浅尝 | 基于深度序列模型的知识图谱补全 - CSDN博客
为解决上述问题,本文提出了一种适于知识图谱的深度序列模型 DSKG (a deep sequential model) ,其中使用了一种新型结构的 RNN 。本文的主要贡献包括: 提出了一种新的知识图谱补全方法,通过扩展多层 RNN 将知识图谱建模成长度为 3 的序列。
DSKG: A Deep Sequential Model for Knowledge Graph Completion
In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neural network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG completion models on the conventional entity prediction task for many evaluation metrics, based on two benchmark datasets and a more difficult dataset.
最佳论文:南京大学提出DSKG,将多层RNN用于知识图谱补全
2018年8月24日 · dskg 不仅能预测实体,而且还能预测整个三元组。为了评估 dskg 在直接预测三元组上的表现,我们构建了一个具有较大窗口的波束搜索器。另外也还有一些能够提升序列预测结果的复杂方法 [8]。