
Why does #lna - lnb = ln(a/b)#? - Socratic
2017年10月1日 · It does not matter what base we use providing the same base is used for all logarithms, here we are using bease e. Let us define A,B.C as follows=: A = ln a iff a = e^A , B …
How do you solve lnx+ln(x-2)=3? - Socratic
2015年9月10日 · We use the fact that lna+lnb=lnab Hence we have that lnx+ln(x-2)=3=>ln(x(x-2))=3=> x(x-2)=e^3=> x^2-2x-e^3=0 The last is a trinomial with respect to x that has the …
How do you solve #Ln (x-1) + ln (x+2) = 1 - Socratic
2018年7月21日 · 12840 views around the world You can reuse this answer ...
How do you solve ln20+ \ln 5= 2\ln x? - Socratic
2017年5月12日 · x=10 we need to use the laws of logs. Assuming all the logs have the same base we have the following properties : lnA=lnB=>A=B lnA+lnB=lnAB lnA-lnB=ln(A/B) …
How do you differentiate #y = (ln(x^2))^(2x+3)#? - Socratic
2018年6月14日 · Note firstly that #y# can be expressed more simply. #y=(ln(x^2))^(2x+3)# #y=(2lnx)^(2x+3)# Take the variable out of the exponent by taking logarithms:
What is the derivative of #ln(4x)#? - Socratic
2015年6月29日 · 1/x y = ln4x We have a choice. We can either use the chain rule in the form: d/dx(ln(u)) = 1/u * (du)/dx OR we can use properties of logarithms to rewrite the function. …