
If log_3 5 = x, what is x? - Socratic
2016年3月6日 · x = log_3 (5) = log(5)/log(3) ~~ 1.465 x is the Real solution to 3^x = 5 We can use the change of base formula: log_a b = (log_c b) / (log_c a) with a=3, b=5 and c = 10 or c = e to allow the calculation of an approximation for log_3 5 in terms of common or natural logarithms.
How to solve this problem?: log_3 X=5 - Socratic
2018年3月1日 · x=243 log_3(x)=5 Apply the logarithm base change rule, stated as: \text{If}\ \ \ \ log_b(x)=y\ \ \ \ \text{then}\ \ \ \ \ \ \ b^y=x By applying here, we get: 3^5 ...
How do you solve log_3 (4x-5)=5? - Socratic
2018年3月15日 · Given: #log_3 (4x-5)=5# Make both sides the exponent of the base, 3: #3^(log_3 (4x-5))=3^5# The left side simplifies to the argument of the logarithm and the right side is computed with a calculator:
How do you write log_3 243=5 in exponential form? - Socratic
2016年7月14日 · 3^5=243 Aa per definition of logarithm, if a^m=b, we have log_(a)b=m. Hence log_(3)243=5 can be written as 3^5=243.
What is log_3 243? - Socratic
2017年1月1日 · log_3 243 = 5 Let x = log_3 243 :. 3^x = 243 = 3^5 Equating indices-> x=5
How do you simplify log_3 5 + 5log_3 2? - Socratic
2018年7月3日 · \\log_{3}160 \\log_{3}5+5\\log_{3}2 =\\log_{3}5+\\log_{3}2^5 =\\log_{3}(5\\cdot2^5) =\\log_{3}(5\\cdot32) =\\log_{3}160
How do you solve logx = 3? - Socratic
2015年11月20日 · x=1000 Note that when log is not paired with a base, there base is implied to be 10. So, logx can be written as log_10x. log_10x=3 10^(log_10x)=10^3 x=1000
How do you solve #Log(3x–5)=3 - Socratic
2015年12月6日 · #log(a)# means #log_(10) a# (The default base for the #log# function is #10#). #color(black)(log_b a = c)# means #color(black)(b^c=a)# (Of the two this is the one you really need to memorize and practice using). Applying this to the given example: #log(3x-5)=3# means #color(white)("XXX")log_10(3x-5)=3# which in turn means #color(white)("XXX")10 ...
How do you evaluate #Log_3 (243)#? - Socratic
2015年8月19日 · How do you evaluate #Log_3 (243)#? Precalculus Properties of Logarithmic Functions Logarithm-- Inverse of an Exponential Function. 1 Answer
How do you calculate log_3 45 - log_3 9? | Socratic
2018年6月26日 · We will use logarithmic rules to find that the answer is log5/log3, or about 1.645. The first rule we'll use is log_a b-log_a c=log_a (b/c): log_3 45-log_3 9=log_3 (45/9)=log_3 5 This logarithm doesn't look too friendly. Fortunately, we can use another rule: log_b c=(log_a c)/(log_a b) It doesn't matter what base we choose for a, as long as each logarithm as the same base: log_3 5=(log_10 5 ...