
log化的TPM能做差异分析吗 - CSDN博客
2022年6月28日 · 在差异表达分析中,通常会对基因表达值进行对数转换,例如使用log2(TPM+1)。 这样 做 可以将 数据 的范围缩小,并使得差异更容易观察和解释。 转换后的表达值可以更好地适应火山图的横坐标范围。
试图厘清热图相关的一些细节 - 知乎 - 知乎专栏
【对数转换】取对数时,我们经常在论文中看到log2(tpm+1),实质上这个底数我们可以取2,也可以取e或10. 之所以不用log2(tpm)是因为很多时候我们得到不少基因在某些sample中没有表达,即tpm值为0,而对数的真数不能为0,于是,一般的,我们会进行 log2(tpm+1) 来处理。
单细胞TPM数据遇上Seurat v5 - 简书
2024年4月6日 · 众所周知,正常的单细胞数据应该给我们提供count,但偏偏有一些数据是特殊的,给的是tpm数据。准确来说应该是log2(tpm/10+1) 为啥除以10,这么解释的:
PTMestimate : Estimate log2-abundances of PTM sites and proteins
2020年11月8日 · PTMestimate takes as input the summarized log2-intensities for each PTM site, performs statistical modeling for the abundance of the site, and returns the estimates of model parameters for all sites in all experimental conditions.
Proteome-wide profiling and mapping of post translational
2021年1月26日 · Post translational modifications (PTMs) are recognized as important mechanisms for subtle or dramatic alterations of protein function and provides a mean for cells...
MSstatsPTM: MSstatsPTM: A package for statistical …
2020年11月8日 · PTMnormalize() normalizes the quantified peak intensities to correct systematic variation across MS runs. PTMsummarize() summarizes log2-intensities of spectral features (i.e., precursor ions in DDA, fragments in DIA, or transitions in SRM) into one value per PTM site per run or one value per protein per run.
生信笔记13-转录组下游分析之:差异分析 - 简书
2023年3月19日 · 当表达矩阵为counts时,优先使用edgeR;当只有TPM时,TPM的分布接近芯片数据,使用limma;FPKM做差异分析,不推荐! xlab("log2 Fold Change")+. ylab("-log10Pvalue") +. geom_point(size=1,alpha=0.6)+. # geom_text(aes(label = gene))+. scale_color_manual(breaks = c('up','down','non'),values = c("#BC3C28","#0072B5","grey")) +.
tsunghengtsai/MSstatsPTM - GitHub
PTMsummarize() summarizes log2-intensities of spectral features (i.e., precursor ions in DDA, fragments in DIA, or transitions in SRM) into one value per PTM site per run or one value per protein per run.
PTMnormalize : Normalization of log2-intensities across MS runs
2020年11月8日 · PTMnormalize normalizes log2-intensities of spectral features across MS runs using a reference, or by equalizing a chosen summary (the log2 intensity summation, median, or mean of log2-intensities) from all features, features of …
TMT analyses with FragPipe
This tutorial analyzes a single TMT10-labeled sample (a single ‘plex’), see this tutorial on analyzing multiple plexes and PTM site-specific quantification reports. The alternative is to use peptide/protein-level TMT quantification reports produced by Philosopher (e.g. protein.tsv, or combined_protein.tsv file when using multiple plexes).