
首页 - 洛谷 | 计算机科学教育新生态
洛谷创办于2013年,致力于为参加noip、noi、acm的选手提供清爽、快捷的编程体验。它拥有在线测题系统、强大的社区、在线学习功能。很多教程内容由各位oiers提供的,内容广泛。无论是初学oi的蒟蒻,还是久经沙场的神犇,均可从中获益,也可以帮助他人,共同进步。
Understand and learn Chinese easily - Loqu8
Introducing Loqu8 iCE Version 8. Loqu8 iCE is a powerful tool for understanding and learning Chinese. Traditional learning programs that use repetitive drills and silly matching games may be helpful for younger children, but learning experts agree that adults learn differently.
P1908 逆序对 - 洛谷
猫猫 TOM 和小老鼠 JERRY 最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计。 最近,TOM 老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整数序列,逆序对就是序列中…
P1433 吃奶酪 - 洛谷
房间里放着 n 块奶酪。一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在 (0,0) 点处。
ynqa/logu: Extract patterns from unstructured log messages - GitHub
2024年8月5日 · logu is for extracting patterns from (streaming) unstructured log messages. For parsing unstructured logs, it uses the parser from Drain. In simple terms, it tokenizes log messages, builds a tree structure, and groups similar logs into a single cluster, converting unstructured log data into a format that can be organized and analyzed.
LoGU: Long-form Generation with Uncertainty Expressions
2024年10月18日 · In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where …
Smart-Luogu | 强大的样式
Smart - Luogu 由 Acerkaio 所开发,不同于绝大部分 Luogu 样式基于氩洛谷开发,Smart - Luogu 从头开发。就目前,Smart - Luogu 仍然处于发展萌芽阶段,功能尚未被完全发掘,Bug 频繁,望原谅。
试题列表 - 洛谷有题
2013-2018 , 洛谷 © Developed by the Luogu Dev Team. All rights reserved. 沪ICP备18008322号-1
[python] Python日志记录库loguru使用指北 - 落痕的寒假 - 博客园
2024年6月30日 · Loguru是一个功能强大且易于使用的开源Python日志记录库。它建立在Python标准库中的logging模块之上,并提供了更加简洁直观、功能丰富的接口。Logging模块的使用见:Python日志记录库logging总结。Loguru官方仓库见:loguru,loguru官方文档见: logu
LoGU: Long-form Generation with Uncertainty Expressions
In this work, we introduce the task of Long-form Generation with Uncertainty (LoGU). We identify two key challenges: Uncertainty Suppression , where models hesitate to express uncertainty, and Uncertainty Misalignment , where models convey uncertainty inaccurately.