
MANO
MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand.
基于参数化模型 (MANO)的手势姿态估计---全面剖析_mano模型 …
2021年4月9日 · Mano 机器模拟器是基于Python编程语言实现的一个软件工具,它旨在帮助用户理解计算机系统架构的基础知识。这个模拟器是根据M. Morris Mano在《计算机系统架构》(第3版)一书中所描述的基本计算机模型进行构建的。
A pytorch Implementation of MANO hand model - GitHub
MANO is a differentiable hand model that can map hand pose parameters (joint angles and root location) and shape parameters into a 3D hand mesh. The model is very realistic, has low-dimensions, and can fit any human hand.
GitHub - lixiny/manotorch: MANO hand model in PyTorch …
manotorch is a differentiable PyTorch layer that deterministically maps from pose and shape parameters to hand joints and vertices. It can be integrated into any architecture as a differentiable layer to predict hand mesh. manotorch is compatible with Yana's manopth package and Omid's MANO package, allowing for interchangeability between them.
[2201.02610] Embodied Hands: Modeling and Capturing Hands …
2022年1月7日 · To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses.
推荐开源项目:MANO——基于PyTorch的手部模型实现-CSDN博客
2024年10月10日 · MANO是一个可微分的 hand model,能够将手部姿态参数(关节角度和根位置)和形状参数映射到一个3D手部网格。 该模型非常逼真,维度低,适用于任何人类手部。
基于MANO的3D手部姿态估计方法:3D Hand Shape and Pose …
这篇论文使用的手部模型为mano ,它类似于人体模型 smpl ,如果了解过smpl对于mano应该很容易理解。 MANO可以表示为函数 M(\beta,\theta) ,shape参数 \beta 和pose参数 \theta 分别控制手部的形状和姿态:
多种机械手:MANO,shadow,LEAP - CSDN博客
2024年12月3日 · MANO(Metric-Affine Hand Model)是一个用于手部姿态估计的三维参数化模型,它能够模拟手部的形状和运动。 MANO 模型是由德国马克斯·普朗克研究所(Max Planck Institute)开发的,旨在提供一个逼真的、低维度的、并且能够捕捉到手部非刚性变化的模型。
基于参数化模型 (MANO)的手势姿态估计---全面剖析 - 编程号
2024年12月10日 · 本文的目的在于为大家介绍,基于MANO的手部姿态估计的流程:包括并不限于: 数据处理, MANO的推理流程 (与论文对齐), 手的解剖学和生物学特点。 1. 什么是手部姿态估计? 同人体姿态估计一样, 是给定一张手部特写图片,估计其姿态 (2D/3D keypoint)的位置 (通常是 21 个). 下图是一个最经典的实现 (无参数化模型):
GitHub - hassony2/manopth: MANO layer for PyTorch, generating hand …
ManoLayer is a differentiable PyTorch layer that deterministically maps from pose and shape parameters to hand joints and vertices. It can be integrated into any architecture as a differentiable layer to predict hand meshes. ManoLayer takes batched hand pose and shape vectors and outputs corresponding hand joints and vertices.