
MERGE/MEDIC - Questions and Answers in MRI
MERGE ("Multiple Echo Recombined Gradient Echo") is a spoiled T2*-weighted sequence for spinal and musculoskeletal imaging developed by GE Healthcare. The corresponding Siemens sequence is called MEDIC ("Multi-Echo Data Image Combination"), while the Philips sequence is called M-FFE ("Merged Fast Field Echo").
미투디스크
세계사, 과학, 인문학을 넘나드는 대한민국 최초의 의학 스토리텔링 프로그램. 그때 그 유명인은 왜, 어떻게 죽음을 맞이했을까? 역사 속 인물과 현대 셀럽들의 죽음을 통해 알아보는 질병과 의학의 …
SAM-Med2D:打破自然图像与医学图像的领域鸿沟,医疗版 SAM
结果表明,SAM-Med2D在各种医学图像分割任务中表现出色,在同等分辨率时,FT-SAM在Bbox提示模式下实现了11.93%的提升,而SAM-Med2D实现了17.67%的提升。 在单点提示模式下,SAM-Med2D表现出了压倒性的优势 (18.94% vs. 70.01%)。 大模型成功的经验告诉我们,数据量对于模型的学习至关重要。
OpenGVLab/SAM-Med2D: Official implementation of SAM-Med2D - GitHub
2023年9月2日 · SAM-Med2D is trained and tested on a dataset that includes 4.6M images and 19.7M masks. This dataset covers 10 medical data modalities, 4 anatomical structures + lesions, and 31 major human organs. To our knowledge, this is currently the largest and most diverse medical image segmentation dataset in terms of quantity and coverage of categories.
MEDIC MRI sequence | MERGE | M-FFE FE MRI - mrimaster
Multiple Echo Data Image Combination (MEDIC) is a T2*-weighted spoiled gradient echo sequence. Multiple echoes acquired in one measurement are combined into an image. This sequence uses flow compensation unipolar frequency encoding gradients that remove CSF flow artifacts. MEDIC sequences produce a predominantly T2-weighted image.
SAM-Med2D - CSDN博客
2023年9月8日 · 本文介绍了SAM-Med2D,一种针对医学图像设计的模型,通过大规模医学图像数据集和微调策略,显著提升了在医学图像分割任务中的性能。 相比于自然图像,医学图像的特殊性要求专门的模型。 SAM-Med2D展示了在单点提示模式下的压倒性优势,为医疗AI的发展打开新路径。 医疗版 SAM 开源,打破自然图像与医学图像的领域鸿沟. 本文提出了SAM-Med2D,在单点提示模式下,SAM-Med2D相较于SAM表现出了压倒性的优势 (18.94% vs. 70.01%)。 并且团队 …
西门子MR序列概述及临床应用 - 360doc
2023年10月30日 · me2d, me3d. 12.4 MEDIC 序列参数特点. 融合回波数越多,有效TE时间将增长. MEDIC序列具有更重的T2*权重. 磁化率伪影更重. 在一个TR内扫描的层数降低. » 13 Turbo FLASH (2D)/MPRAGE (3D) 13.1 序列特点 Turbo FLASH (2D)/MPRAGE (3D) 利用饱和或者反转脉冲获 …
amatsugi/me2d: two-dimensional master equation solver - GitHub
two-dimensional master equation solver. Contribute to amatsugi/me2d development by creating an account on GitHub.
西门子序列的临床应用 - 百度文库
成像速度快。 运动冻结. 大翻转角的高分辨强T2W_3D序列。 实质是使用 平衡梯度和可变翻转脉冲的3D_true_FISP序列, 使用不同激发水平内在的进行两次米集并进行组 合.
GitHub - uni-medical/SAM-Med2D: SAM-Med2D: Bridging the …
If you are interested in Medical Foundation Models and General Medical AI, including designing benchmark datasets, general models, evaluation systems, and efficient tools, please contact us. Global Collaboration: We're on a mission to redefine medical research, aiming for a more universally adaptable model.