
Probing out-of-distribution generalization in machine learning for ...
2025年1月11日 · Here, we demonstrate in the materials science setting that heuristic evaluations lead to biased conclusions of ML generalizability and benefits of neural scaling, through evaluations of...
OOD Detection Benchmark | OODDB
The OODDB (OOD Detection Benchmark) is a comprehensive benchmark suite designed to evaluate machine learning models performing Out-Of-Distribution Detection, with a specific focus on its semantic aspect (a.k.a. Semantic Novelty Detection).
VCC
In this paper, we propose a simple yet effective framework, Prototypical Outlier Proxy (POP), which introduces virtual OOD prototypes to reshape the decision boundaries between ID and OOD data. Specifically, we transform the learnable classifier into a fixed one and augment it with a set of prototypical weight vectors.
Out-of-distribution Detection系列专栏(二) - CSDN博客
2022年1月11日 · ID指的是in-distribution数据,也就是我们熟悉的训练数据;OOD指的是out-of-distribution,在不同的领域也可能被叫做outlier或者是anomaly data,说的是与ID分布不一致的数据。其实ID和OOD的界定比较模糊,通常我们是将语意信息相差较大的两个数据集构 …
An Information Theoretical View for Out-of-Distribution Detection
2024年11月27日 · In this work, we analyze OOD detection task from the information theoretical perspective, and show that the close set classification proxy for representation learning may cause over-confidence on known classes and undesired compression of …
OOD detection: distance-based and contrastive learning
2024年9月23日 · We combine the feature vectors from the training, validation, and OOD data into a single dataset. UMAP (Uniform Manifold Approximation and Projection) is used to reduce the dimensionality of the feature vectors from the high-dimensional space to 2D, making it possible to visualize the relationships between different data points.
Motivation: HypStructure with Mahalanobis score leads to improved OOD detection. Main Theorem: Existence of eigenvalue gaps between each level of hierarchy for CPCC-based representations.
机器学习算法:UMAP 深入理解 - 知乎 - 知乎专栏
UMAP的核心与t-SNE非常相似,两者都使用图形布局(graph layout)算法在低维空间中排列数据。简单来说,UMAP首先构建数据的高维图表示,然后优化低维图以使其在结构上尽可能相似。虽然UMAP用于构建高维图的数学是复杂的,但背后的想法是非常简单的。
OOD目标检测:背景,研究现状,挑战和未来 - CSDN博客
2023年6月14日 · 在计算机视觉领域,目标检测任务一直是研究的热点。然而,大多数现有的目标检测方法在面对 开放环境中的未知类别(Out-Of-Distribution, OOD)时性能表现不佳。本文将探讨OOD目标检测的背景、研究现状、挑战和未来。 2. 背景
TSNE 与 UMAP 的对比:了解两种算法的差异 - CSDN博客
2024年1月8日 · umap是一种基于概率流线的方法,用于将高维数据映射到低维空间。 它的核心思想是通过将数据点视为流线的节点,然后计算流线之间的欧氏距离来实现数据的可视化。
- 某些结果已被删除