
GitHub - XiaoMi/mace: MACE is a deep learning inference …
Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. The design focuses on the following targets: Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations.
Foundation models — mace 0.3.12 documentation - Read the Docs
Currently available pretrained MACE models: Initial release of foundation model. Improved accuracy for materials, improved high pressure stability. Initial release covering neutral organic chemistry. Foundation models are a rapidly evolving field.
基本使用方法 — MACE documentation - Read the Docs
编译安装位置为 build/cmake-build/armeabi-v7a, 可以使用 libmace 静态库或者动态库。 除了 armeabi-v7,其他支持的 abi 包括: arm64-v8a, arm-linux-gnueabihf, aarch64-linux-gnu, host; 支持的目标设备 (RUNTIME) 包括: GPU, HEXAGON, HTA, APU. 撰写模型相关的 YAML 配置文件: 假设模型配置文件的路径是: ../mace-models/mobilenet-v1/mobilenet-v1.yml,执行: 将会在 build/mobilenet_v1/model/ 中产生 4 个文件.
中文 — MACE documentation - Read the Docs
Mobile AI Compute Engine (MACE) 是一个专为移动端异构计算设备优化的深度学习前向预测框架。 MACE覆盖了常见的移动端计算设备(CPU、GPU、Hexagon DSP、Hexagon HTA、MTK APU),并且提供了完整的工具链和文档,用户借助MACE能够 很方便地在移动端部署深度学习模 …
Tutorials on MACE training and architecture
In this tutorial, we will introduce you to the basics of MACE training and evaluation. We cover the construction of a dataset, the basic hyperparameters of a MACE model, and how to train and evaluate a model.
Introduction — mace 0.3.12 documentation - Read the Docs
What is MACE ? MACE provides fast and accurate machine learning interatomic potentials with higher order equivariant message passing. For faster training and inference using the cuEquivariance library, please read the CUDA acceleration with cuequivariance library section.
MACE-MP-0:通用机器学习模型在材料化学中的应用 - 知乎
在这里,我们使用最先进的 MACE架构,介绍了一个单一的通用机器学习模型,该模型仅在包含150k无机晶体的公共数据库上进行训练,能够对分子和材料进行稳定的分子动力学模拟。 我们展示了MACE-MP-0模型的力量——以及其在定性和有时定量上的准确性——在物理科学中的多种问题上,包括固体、液体、气体的性质、化学反应、界面甚至小蛋白的动力学。 该模型可以即开即用,并且可以作为任何原子系统的起始或“基础模型”,因此是朝着通过降低入门门槛来实现机器 …
GitHub - ACEsuit/mace: MACE - Fast and accurate machine …
MACE provides fast and accurate machine learning interatomic potentials with higher order equivariant message passing. This repository contains the MACE reference implementation developed by Ilyes Batatia, Gregor Simm, David Kovacs, and the group of Gabor Csanyi, and friends (see Contributors). Also available:
MACE — MACE documentation - Read the Docs
MACE, a Machine-learning Approach to Chemistry Emulation, by Maes et al. (2024), is a surrogate model for chemical kinetics. It is developed in the contexts of circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars, i.e. evolved low-mass stars.
掌握材料科学:MACE,新一代的交互势能模型! - CSDN博客
2024年6月8日 · MACE(Materials Adaptive Convolutional Equivariants)是专为材料科学设计的一个强大而高效的机器学习工具,提供高阶等变消息传递的快速准确的交互势能预测。 由Ilyes Batatia、Gregor Simm、David Kovacs和Gabor Csanyi教授团队开发,MACE为研究者提供了训练和评估先进分子系统的新型框架。 MACE采用了先进的深度学习技术,如高阶等变图神经网络(Higher Order Equivariant Graph Neural Networks),以处理复杂的3D点云数据。 它具备以 …