
How do you find the exact values of sin 15 degrees using the
2015年7月21日 · I found: sin (15°)=0.258 Using the Half Angle Formula: color (red) (sin^2 (x)=1/2 [1-cos (2x)]) with x=15° and 2x=30° you get: sin^2 (15°)=1/2 [1-cos (30 ...
How do you find the value of - Socratic
2016年12月23日 · How do you find the value of sin 15 using the double or half angle formula?
How do you use the half angle identity to find exact value of sin 15 ...
2015年9月28日 · Find sin (15) Ans: sqrt (2 - sqrt3)/2 Use the trig identity: cos 2a = 1 - 2sin^2 a cos (30) = sqrt3/2 = 1 - 2sin^2 (15) 2sin^2 (15) = 1 - sqrt3/2 = (2 - sqrt3)/2 sin^2 (15) = (2 - sqrt3)/4 sin (15) = +- sqrt (2 - sqrt3)/2. Since arc (15) deg is in Quadrant I, its sin is positive. Then, sin (15) = sqrt (2 - sqrt3)/2. Check by calculator. sin 15 = 0.26 sqrt (2 + sqrt3)/2 = 0.52/2 = 0.26. OK
How do you evaluate Sin (165)? | Socratic
2016年9月29日 · sin 165^@ = 1/4 (sqrt (6)-sqrt (2)) Some things we will use: sin (theta) = sin (180^@ - theta) sin (alpha-beta) = sin alpha cos beta - sin beta cos alpha sin 45^@ = cos 45^@ = sqrt (2)/2 sin 30^@ = 1/2 cos 30^@ = sqrt (3)/2 Hence we find: sin 165^@ = sin (180^@-165^@) color (white) (sin 165^@) = sin 15^@ color (white) (sin 165^@) = sin (45 ...
Show that $\\sin45°+\\sin15°=\\sin75°$ - Mathematics Stack …
mathisfun did a nice job of showing you how to reconcile your answers. Another way of showing that sin(45 ∘) + sin(15 ∘) = sin(75 ∘) is to use the formula sinα + sinβ = 2sin(α + β 2)cos(α − β 2)
How do you evaluate sin(45)cos(15)+cos(45)sin(15)? | Socratic
2018年3月20日 · sin45cos15 +cos45sin15 It is in the form sinacosb + cosasinb But we know sin(a +b) = sinacosb +cosasinb ∴ sin45cos15 +cos45sin15 = sin(45 +15) = sin60 = √3 2
Trigonometry - Find the exact value of $\\sin15^\\circ$
I am having problems understanding how to solve 14(6–√ − 2–√) 1 4 (6 − 2), find the exact value of sin15∘ sin 15 ∘. I have the answer, but I need help understanding the methods to achieve the answer. Thank you.
trigonometry - Prove $\sin (45^°) + \sin (15^°) = \sin (75 ...
I rewrote the statement as $$ \\sin(30^° + 15^°) + \\sin(15^°) = \\cos(15^°). $$ Then I got $$ (\\sqrt{3}-2) \\sin(15^°) = \\cos(15^°). $$
Finding value of $\\sin (15\\, ^{\\circ})$ with half angle identity
2015年3月27日 · The answer I got when trying to solve it was $\\sqrt{\\frac{1 - \\sqrt3}{2} }$ but the book says it's $\\sqrt{ \\frac{2 - \\sqrt3}{2}}$ and I don't know how the two on the top half gets there.
algebra precalculus - Derivation of $\sin (15^\circ)$ geometrically ...
2023年2月21日 · Here is another way that gives sin 15 and sin 75 pretty quickly. (Assuming we know how to use geometry to get sin/cos 30/45.) We define isosceles ABC with vertex A of 30 degrees. We draw in BD so BD=BC, and we draw DE perpendicular to AB. Let x = sin 15. Then BC=2x. BD=BC. Since BDE is an isosceles right triangle, BE = DE = x√2. But ADE is a 30-60-90 triangle, so AE = x√6. That makes sin15 ...