
Spatial Temporal Graph Convolutional Networks (ST-GCN)
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch Resources
Spatial Temporal Graph Convolutional Networks (ST-GCN) for …
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch Resources
GitHub - ZHmQAQ/PoseClassifier: 姿态关键点 STGCN 网络训练和 …
该项目整合了 RTMPose 姿态识别和 ST-GCN 时空图卷积两个模型,结合开创性的距离角度判定算法成功实现了“基于人体姿态关键点的视频分类和打分任务”。
ST-GCN基于骨骼的行为识别模型 - GitHub
st-gcn是aaai 2018提出的经典的基于骨骼的行为识别模型,通过将图卷积应用在具有拓扑结构的人体骨骼数据上,使用时空图卷积提取时空特征进行行为识别,极大地提升了基于骨骼的行为识别任务精度。
Spatial Temporal Graph Convolutional Networks (ST-GCN)
ST-GCN is able to exploit local pattern and correlation from human skeletons. Below figures show the neural response magnitude of each node in the last layer of our ST-GCN.
GitHub - hazdzz/stgcn: The PyTorch implementation of STGCN.
pytorch gcn tcn gnn road-traffic-prediction Resources. Readme License. LGPL-2.1 license Activity. Stars. 545 stars. Watchers. 3 watching. Forks. 116 forks. Report repository Releases. No releases published. Packages 0. No packages published . Contributors 3. hazdzz Chieh Chang; jeongwhanchoi Jeongwhan Choi; ATRM-Raphael;
st-gcn/OLD_README.md at master · yysijie/st-gcn - GitHub
ST-GCN is able to exploit local pattern and correlation from human skeletons. Below figures show the neural response magnitude of each node in the last layer of our ST-GCN.
1zgh/st-gcn: ST-GCN-5-25 - GitHub
ST-GCN is able to exploit local pattern and correlation from human skeletons. Below figures show the neural response magnitude of each node in the last layer of our ST-GCN.
open-mmlab/mmskeleton - GitHub
skeleton-based action recognition (ST-GCN) 2D pose estimation; skeleton-based action generation; 3D pose estimation; pose tracking; build custom skeleton-based dataset; create …
GitHub - VeritasYin/STGCN_IJCAI-18: [IJCAI'18] Spatio-Temporal …
The framework STGCN consists of two spatio-temporal convolutional blocks (ST-Conv blocks) and a fully-connected output layer in the end. Each ST-Conv block contains two temporal gated convolution layers and one spatial graph convolution layer in the middle.