
Understanding UMAP - GitHub Pages
UMAP, at its core, works very similarly to t-SNE - both use graph layout algorithms to arrange data in low-dimensional space. In the simplest sense, UMAP constructs a high dimensional graph representation of the data then optimizes a low-dimensional graph …
UMAP降维算法原理详解和应用示例 - 知乎 - 知乎专栏
一种降维技术,假设可用数据样本均匀(Uniform)分布在拓扑空间(Manifold)中,可以从这些有限数据样本中近似(Approximation)并映射(Projection)到低维空间。 上面对算法的描述可能会对我们理解它的原理有一点帮助,但是对于UMAP是如何实现的仍然没有说清楚。 为了回答“如何”的问题,让我们分析UMAP执行的各个步骤。 我们可以将UMAP分为两个主要步骤: 找到该流形的低维表示。 下面我们将把它分解成更小的部分,以加深我们对算法的理解。 下面的地图显示 …
别再懵圈!一文30秒搞懂 UMAP 图,快看 - 知乎
2025年1月9日 · UMAP 图,全称是 统一流形逼近与投影图,是数据降维可视化的神器 它能把复杂的高维数据,巧妙地投影到二维或三维空间,让我们一眼看清数据分布与关系。 在 单细胞测序分析 里,UMAP 图超有用。 不同颜色代表不同细胞类型,一个个点就像细胞 “小居民”,聚集成不同 “社区”,帮我们快速找到细胞类群。 和 PCA 、 t-SNE 比,UMAP 可厉害啦。 PCA 像个 “直线思维” 的老实人,擅长处理线性数据;t-SNE 是 “细节控”,但计算慢;UMAP 则是 “六边形战士”,兼 …
What is a UMAP plot? - Single Cell Discoveries
2023年1月20日 · What is a UMAP plot and how to interpret it in single-cell data analysis. Learn the significance of UMAP in visualizing and understanding datasets.
文献中的UMAP图怎么看?!1分钟详解! - 百越生物
2024年9月9日 · 该图是内窥镜样本中155093个细胞的UMAP,揭示了上皮室中的主要细胞类型为enterocytes/colonocytes(肠细胞/结肠炎细胞)、stem cells(干细胞)、goblet cells(杯状细胞)、goblet proliferating cells(杯状增殖细胞)、BEST4/OTOP2细胞、tuft cells(簇状细胞)、EEC(肠内分泌细胞 ...
【降维算法UMAP】调参获得更适合的低维图 - CSDN博客
2024年3月3日 · 降维算法:在单细胞转录组生信分析中,常见的降维算法有两种,UMAP(Uniform Manifold Approximation and Projection) 和T-SNE(t-distributed stochastic neighbor embedding)。 UMPA 运算速度会更快,并且在保留数据结构的同时提供了更好的扩展性。
umap调整及常见参数 - 知乎 - 知乎专栏
UMAP(Uniform Manifold Approximation and Projection)是一种广泛用于高维数据降维的算法,在单细胞分析中常用于可视化细胞的聚类和群体关系。 以下是 UMAP 的常见参数及调整建议。
UMAP: Uniform Manifold Approximation and Projection for …
Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction. The algorithm is founded on three assumptions about …
How to Use UMAP — umap 0.5.8 documentation - Read the Docs
UMAP is a general purpose manifold learning and dimension reduction algorithm. It is designed to be compatible with scikit-learn, making use of the same API and able to be added to sklearn pipelines. If you are already familiar with sklearn you should be able to use UMAP as a drop in replacement for t-SNE and other dimension reduction classes.
Plotting UMAP results — umap 0.5.8 documentation - Read the …
UMAP is often used for visualization by reducing data to 2-dimensions. Since this is such a common use case the umap package now includes utility routines to make plotting UMAP results simple, and provide a number of ways to view and diagnose the results.
- 某些结果已被删除