
Irreversible synthesis of an ultrastrong two-dimensional polymeric ...
2022年2月2日 · We indeed find that this irreversible polyaramid chemistry enables 2D condensation in solution phase under ambient conditions, producing high yields of an in-plane …
New lightweight material is stronger than steel | MIT News ...
2022年2月2日 · Using a novel polymerization process, MIT chemical engineers have created a new material that is stronger than steel and as light as plastic, and can be easily manufactured …
Nature:不可逆合成超强二维聚合物- X-MOL资讯
2022年2月3日 · 最终的反应使用了市售廉价的均苯三甲酰氯和三聚氰胺作为反应原料,在强氢键受体溶剂如nmp中进行,得到的黄色固体粉末被命名为2dpa-1(图3a)。
Research Area 3: 2D Polyaramids – Strano Research Group
As materials, our work has shown that 2D polyaramids exist between polymeric materials and 2D inorganic crystalline materials, combining the properties of both, but with a solution-phase …
超强二维聚合物最新《Nature》: 和塑料一样轻,模量是防弹玻璃 …
2022年2月3日 · FTIR和AFM表征证实了酰胺键的形成和高度氢键N-H拉伸,为了阐明其分子维度,作者制备了甲硅烷基化2DPA-1(TMS-2DPA-1), TMS-2DPA-1产生高比例的具有不同高 …
A superhero polymer - MIT Technology Review
2022年4月27日 · Because the material, called 2DPA-1, self-assembles, it’s easy to produce in large quantities. Its elastic modulus—the force it takes to deform a material—is between four …
(PDF) An Irreversible Synthetic Route to an Ultra-Strong Two ...
2021年3月25日 · Herein we demonstrate a synthetic route to 2D irreversible polycondensation directly in the solution phase, resulting in covalently bonded 2D polymer platelets that are …
We indeed find that this irreversible 2D polyaramid chemistry enables the monomers to condense in the solution phase under ambient and neutral conditions producing high yields of in-plane …
2DPA-1, plastic that is twice as strong as steel
2022年2月21日 · MIT chemical engineers have invented a new type of plastic that is twice as strong as steel. How does it work? Dubbed 2DPA-1, the material is light and mouldable like …
Scientists Create Ultrastrong Polymeric Material | Sci.News
2022年2月3日 · The scientists found that the elastic modulus of 2DPA-1 — a measure of how much force it takes to deform a material — is between four and six times greater than that of …