在新选项卡中打开链接
  1. Copilot 答案
    Conservation science (cultural property) - Wikipedia

    With respect to cultural property, conservation science is the interdisciplinary study of the conservationof art, architecture, technical art history and other cultural works through the use of scientific inquiry. General areas of research include the technology and structure of artistic and historic works. In other words, the materials and techniques from which cultural, artistic and historic objects are made. There are three broad categories of conservation s…

    With respect to cultural property, conservation science is the interdisciplinary study of the conservation of art, architecture, technical art history and other cultural works through the use of scientific inquiry. General areas of research include the technology and structure of artistic and historic works. In other words, the materials and techniques from which cultural, artistic and historic objects are made. There are three broad categories of conservation science with respect to cultural heritage: understanding the materials and techniques used by artists, study of the causes of deterioration, and improving techniques and materials for examination and treatment. Conservation science includes aspects of materials science, chemistry, physics, biology, and engineering, as well as art history and anthropology. Institutions such as the Getty Conservation Institute specialize in publishing and disseminating information relating to both tools used for and outcomes of conservation science research, as well as recent discoveries in the field.

    Wikipedia

    Prior to thorough scientific analysis, a detailed visual assessment of the object, heritage site, or artwork is necessary in addition to gathering all relevant historic and current documentation. Diagnosing the current state in a non-invasive way allows both conservators and conservation scientists to determine exactly what further analysis would be required and whether the subject of the study will be able to withstand more rigorous examination. Additionally, since the goal of conservation-restoration is to only do the minimum required for preservation, this initial assessment falls in line with the American Institute for Conservation (AIC) Code of Ethics which outlines best practice for conservators and scientists alike.

    Along with assessing the current state and potential risk of future deterioration of artworks and objects, scientific study may be necessary to determine if there is risk to the conservators themselves. For example, some pigments used in paintings contain highly toxic elements such as arsenic or lead and could be hazardous to those working with them. Alternatively, previous restoration efforts may have involved chemicals that are now known to have dangerous side effects with prolonged exposure. In these cases, conservation science may reveal the nature of these hazards as well as present solutions for how to prevent current and future exposure.

    继续阅读

    Research into the chemical and physical properties intrinsic to the materials used to create cultural heritage objects is a large part of the study of conservation science. Materials science, in conjunction with the broader field of restoration and preservation, has resulted in what is now recognized as modern conservation. Using analytical techniques and tools, conservation scientists are able to determine what makes up a particular object or artwork. In turn, this knowledge informs how deterioration is likely to occur due to both environmental effects and the inherent traits of that given material. The necessary environment to maintain or prolong the current state of that material, and which treatments will have the least amount of reaction and impact on the materials of the objects being studied, are the primary goals of conservation research. Conservation treatments fall under four broad categories including cleaning, desalination, consolidation, and pest control. Knowledge of the material properties of cultural heritage and how they deteriorate over time helps conservators formulate actions to preserve and conserve cultural heritage.

    In many countries, including the United Kingdom and Italy, conservation science is considered part of the broader field called 'Heritage Science' which also encompasses scientific aspects less directly related to cultural heritage conservation, as well its management and interpretation.
    The majority of paper is made up of cellulose fibers. The deterioration of paper may be the result of pests such as vermin, insects, and microbes, or by theft, fire, and flood. More specifically, paper deteriorates from two mechanisms that alter its hue and weaken its fibers: acid-catalyzed hydrolysis and oxidation. Treatment for paper includes deacidification, bleaching and washing.

    Safe environments for the storage and display of paper artifacts include having a relative humidity (RH) of below 65% and above 40% and an ideal temperature between 18 and 20 °C (64 and 68 °F).
    Textiles are woven fabrics or cloth that represent culture, material legacy of international trade, social history, agricultural development, artistic trends, and technological progress. There are four main material sources: animal, plant, mineral, and synthetic. Deterioration of textiles can be caused by exposure to ultraviolet (UV) or infrared light (IR), incorrect relative humidity and temperature, pests, pollutants, and physical forces such as fire and water. Textiles may be treated in a number of ways including vacuuming, wet cleaning, dry cleaning, steaming, and ironing. To preserve the integrity of textiles, storage and display environments result in as little light exposure as possible. Safe environments for textiles include those with a temperature of around 21 °C (70 °F) and relative humidity of 50%.
    Leather is a manufactured product made from the skin of animals. Leather can deteriorate from red rot, excessive dryness resulting in cracking and breakage, fading from exposure to light, mold resulting in odors, stains, and distortion, and insects and dust, both of which can cause holes and abrasions. Corrosion can also occur when leather comes into contact with metals. There are two primary methods for leather conservation: application of dressings or treatments to prolong the life of the leather and improving the means by which leather is stored. The second method is a preventive approach while the first, an older method, is an interventive approach. Leather artifacts are best stored with relative humidity between 45% and 55% and a temperature of 18–20 °C (64–…

    在 Wikipedia 上阅读更多信息

    继续阅读

    Conservation science studies the process by which the various mechanisms of deterioration cause changes to material culture that affect their longevity for future generations. These mechanisms may produce chemical, physical, or biological changes and differ based on the material properties of the subject at hand. A large portion of conservation science research is the study of the behavior of different materials under a range of environmental conditions. One method used by scientists is to artificially age objects in order to study what conditions cause or mitigate deterioration. The results of these investigations informs the field on the major risk factors as well as the strategies to control and monitor environmental conditions to aid in long term preservation. Further, scientific inquiry has led to the development of more stable and long-term treatment methods and techniques for the types of damages that do occur.
    Fire is caused by chemical reactions resulting in combustion. Organic material such as paper, textiles, and wood are especially susceptible to combustion. Inorganic material, while less susceptible, may still suffer damage if exposed to fire for any period of time. The materials used to extinguish fires, such as chemical retardants or water, can also result in further damage to material culture.
    Water primarily causes physical changes such as warping, stains, discoloration, and other weakening to both inorganic and organic materials. Water can come from natural sources such as flooding, mechanical/technological failures, or human error. Water damage to organic material may lead to the growth of other pests such as mold. In addition to the physical effects of water directly on an object or artwork, moisture in the air directly affects relative humidity which can in turn exacerbate deterioration and damage.
    Light causes cumulative and irreversible damage to light-sensitive objects. The energy from light interacts with objects at the molecular level and can lead to both physical and chemical damage such as fading, darkening, yellowing, embrittlement, and stiffening. Ultraviolet radiation and Infrared radiation, in addition to visible light, can be emitted from light sources and can also be damaging to material culture. Cultural institutions are tasked with finding the balance between needing light for patrons and guests and exposure to the collection. Any amount of light can be damaging to a variety of objects and artworks and the effects are cumulative and irreversible. Conservation science has helped establish 50 Lux as the benchmark level of light intensity that allows the human eye to operate within the full range the visible light spectrum. While this is a baseline for many museums, adjustments are often needed for based on specific situations. Conservation science has informed the industry on the levels of light sensitivity of common materials used in material culture and the length of time permissible before deterioration is likely to occur. Control strategies must be considered on an item by item basis. Light, ultraviolet, and thermometers for infrared radiation are some of the tools used to detect when levels fall outside of an acceptable range.
    Lightning strikes are the primary natural cause of damage to architectural heritage because ancient buildings generally use timber with high oil content, such as pine. Lightning strikes can cause the timber in the building to catch fire by the heat of the lightning arc. Lightning can also split wood and cause damage to the building structure. The lightning current will generate heat after passing through the timber and generate gas inside, and the impact force formed by the instantaneous expansion of the gas will knock the wood out of …

    在 Wikipedia 上阅读更多信息

    继续阅读

    There are a variety of methods used by conservation scientists to support work in the fields of art conservation, architectural conservation, cultural heritage, and care of cultural objects in museums and other collections. In addition to the use of specialized equipment, visual inspections are often the first step in order to look for obvious signs of damage, decay, infilling, etc.

    Prior to any type of scientific analysis, detailed documentation of the initial state of the object and justification for all proposed examinations is required to avoid unnecessary or potentially damaging study and keep the amount of handling to a minimum. Processes such as stereomicroscopy can reveal surface features such as the weave of parchment paper, whether a print was done in relief or in intaglio, and even what kind of tools an artist may have used to create their works. While there are many different specialized and generic tools used for conservation science studies, some of the most common are listed below.
    Source:
    Scanning Electron Microscopy (SEM)
    X-ray fluorescence spectroscopy (XRF) of the wooden, painted portrait of a Roman portrait mummy. The portable tool is hooked up to a rig that allows it to pan left and right, up and down, so as to scan the entire surface of the portrait. The height can also be manually adjusted to ensure focus is maintained. This technique provides information on the paints used which aids in provenance and compositional studies. X-Ray Fluorescence Spectroscopy (XRF)
    Computerized Tomography Scanning (CT Scan) and Magnetic Resonance Imaging (MRI)
    Reflectance Transformation Imaging (RTI)
    Fourier Transform Infrared Spectroscopy (FTIR)
    The type of material present will be the deciding factor in what method will be appropriate for study. For example, organic materials are likely to be destroyed if exposed to too much radiation, a concern when doing X-ray and electron-based imaging. Conservation scientists may specialize with specific materials and work closely with conservators and curators in order to determine appropriate analysis and treatment methods.

    继续阅读
  1. 某些结果已被删除