
How do you find the exact value of cos 180degrees - Socratic
2018年5月25日 · Within the unit circle, cosine provides the x coordinate of a point on the surface of the circle. Sine provides the y coordinate of a point on the surface of the circle. At 180o, the …
How do you prove cos (180°-a) = -cos (a)? - Socratic
2016年7月14日 · Prove trig expression Apply the trig identity: cos (a - b) = cos a.cos b + sin a.sin b cos (180 - a) = cos 180.cos a - sin 180.sin a Because sin 180 = 0, cos 180 = -1, there for: …
How do you verify Cos (180° - theta) = -cos theta? | Socratic
2016年5月23日 · Please see below. One of the easiest ways could be to use the formula cos (A-B)=cosAcosB+sinAsinB Hence, cos (180^o-theta)=cos180^ocostheta+sin180^osintheta = ( …
How do you verify the identity cos (180+x)=-cosx? | Socratic
2018年3月7日 · Use the sum in cosine identity, cos (A+ B) = cosAcosB - sinAsinB. Thus we have: cos (180˚)cos (x) - sin (180˚)sinx = -cosx -1 (cosx) - 0 (sinx)= -cosx -cosx= -cosx LHS = RHS …
How do you prove cos (180°+a) = -cos (a)? - Socratic
2016年6月27日 · Prove trig identity. Use the trig identity: cos (a + b) = cos a.cos b - sin a.sin b cos (180 + a) = cos 180.cos a - sin 180.sin a Trig table --> sin 180 = 0, and cos 180 = -1 Therefor, …
How do you find the 6 trigonometric functions for 180 degrees?
2015年9月23日 · sin180^@=0 cos180^@=-1 tan180^@=0 cosec180^@=oo sec180^@=-1 cot180^@=oo
How do evaluate sin 270 + cos (-180)? - Socratic
2015年10月1日 · sin (270^@)+cos (-180^@) = -2 At 270^@ for a unit radius circle color (white) ("XXX")sin (270^@) = ("opposite")/ ("hypotenuse") color (white) ("XXXXXXXXX")=y/sqrt (x ...
How do you find the exact value of cos 180? | Socratic
2017年1月4日 · How do you find the exact value of cos 180?cos180=-1
How do you find sine, cosine, tangent of 90^@ or 180^@ using
2018年3月10日 · How do you find sine, cosine, tangent of 90∘ or 180∘ using the unit circle? Trigonometry Right Triangles Applying Trig Functions to Angles of Rotation
How do you prove sin (180°-a) = sin (a)? - Socratic
2016年7月27日 · Prove trig identity Apply the trig identity: sin (a - b) = sin a.cos b - sin b.cos a sin (180 - a) = sin 180.cos a - sin a.cos 180 Since sin 180 = 0 and cos 180 = -1, there for sin (180 …