
Hyperbolic functions - Wikipedia
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.
cosh(pi) - Symbolab
What is the value of cosh (pi) ?
Hyperbolic Functions - sinh, cosh, tanh, coth, sech, csch - Math10
$\text{cosh} (x + 2k \pi i) = \text{cosh}\ x$ $\text{sech} (x + 2k\pi i) = \text{sech} x$ $\text{tanh} (x + k\pi i) = \text{tanh}\ x$ $\text{coth} (x + k\pi i) =\text{coth} x$ Relationship between inverse hyperbolic and inverse trigonometric functions
雙曲餘弦 - 维基百科,自由的百科全书
雙曲餘弦一般以cosh表示 [1] ,在部分較舊的文獻中有時會以 表示。 [2] 雙曲餘弦可以用來描述悬链线,即兩端固定自然下垂的繩索,因此可以用於進行悬索桥的工程計算。
COSH function calculator and graph
COSH (x) returns the hyperbolic cosine of the angle x. The argument x must be expressed in radians. To convert degrees to radians you use the RADIANS function. The argument x can be a real number, a complex number, or a matrix. When it is a matrix, the function returns a matrix with the same dimensions and with the COSH function applied to all ...
cosh - MathWorks
A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]) A = 3.7622 -1.0000 0.8660 -0.6235 -0.0000. Compute the hyperbolic cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cosh returns unresolved symbolic calls. symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])) ...
cosh (pi) - Wolfram|Alpha
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music…
complex analysis - Prove the relation of $\cosh(\pi/2)$ and $e ...
$\cosh(x)$ is usually defined defined as $\frac{e^{x} + e^{-x}}{2}$. If you haven't some different definition, then it is quite straightforward: $$\cosh\left(\frac{\pi}{2}\right)=\frac{e^{\frac{\pi}{2}} + e^{-\frac{\pi}{2}}}{2} = \frac{1}{2}e^{-\frac{\pi}{2}}(1 + e^x)$$
cosh(pi - Wolfram|Alpha
Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ...
SmallBASIC | COSH
2023年9月21日 · a = cosh (pi) print a ' Output: 11.59195327552152 b = acosh (a) print b ' Output: 3.14159265358979
- 某些结果已被删除