
On the Relation Between the Sharpest Directions of DNN Loss and the SGD ...
2018年7月13日 · Abstract: Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-generalizing, flat regions …
ML | Stochastic Gradient Descent (SGD) - GeeksforGeeks
2025年3月3日 · Stochastic Gradient Descent (SGD) is an efficient optimization algorithm for large datasets in machine learning, utilizing random data points for faster convergence and …
Unsupervised Feature Learning and Deep Learning Tutorial
Stochastic Gradient Descent (SGD) simply does away with the expectation in the update and computes the gradient of the parameters using only a single or a few training examples. The …
Overview of optimizers for DNN: when and how to choose …
2020年4月10日 · Stochastic gradient descent (SGD) SGD calculates the gradients with one data. The calculation becomes faster, but the process of gradient descent becomes fluctuating.
Accelerating DNN Training Through Selective Localized Learning
2022年1月10日 · We propose LoCal+SGD, a new algorithmic approach to accelerate DNN training by selectively combining localized or Hebbian learning within a Stochastic Gradient …
On the Relation Between the Sharpest Directions of DNN Loss and the SGD ...
2018年12月20日 · Overall, our results show that the SGD dynamics in the subspace of the sharpest directions influence the regions that SGD steers to (where larger learning rate or …
SSD-SGD: Communication Sparsification for Distributed Deep …
2022年9月14日 · SSD-SGD is a general algorithm proposed for distributed DNN training acceleration via communication sparsification, which combines the merits of SSGD and …
S-SGD: Symmetrical Stochastic Gradient Descent with Weight …
2020年9月5日 · We devise a new weight-noise injection-based SGD method that adds symmetrical noises to the DNN weights. The training with symmetrical noise evaluates the loss …
深度神经网络的分布式训练概述:常用方法和技巧全面总结 - 知乎
一个常用于分布式设定中的训练的常用算法是随机梯度下降(sgd),该算法将是我们进一步讨论中的核心点。 需要指出一个重点,针对 SGD 提及的原则可以轻松地移植给其它常用的优化算 …
d with Stochastic Gradient Descent (SGD). While understanding the generalization capability of DNNs remains an open challenge, it has been hypothesized that SGD acts as an implicit …
- 某些结果已被删除