
GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis
2020年7月5日 · In this paper, we propose a generative model for radiance fields which have recently proven successful for novel view synthesis of a single scene.
Graph-to-Vision: Multi-graph Understanding and Reasoning …
3 天之前 · Graph Neural Networks (GNNs), as the dominant paradigm for graph-structured learning, have long faced dual challenges of exponentially escalating computational complexity and inadequate cross-scenario generalization capability. With the rapid advancement of multimodal learning, Vision-Language Models (VLMs) have demonstrated exceptional cross-modal relational reasoning capabilities and ...
[论文精读]GRAF: Generative Radiance Fields for 3D ... - CSDN博客
2022年6月15日 · i: 我们提出了GRAF,这是一种用于从未介绍的图像中的高分辨率3D感知图像合成的辐射场的 生成模型。 除了观点操作外,我们的方法还允许修改生成对象的形状和外观。 ii: 我们引入了一个基于斑块的鉴别器,该鉴别器在多个尺度上采样图像,这是有效学习高分辨率生成辐射场的关键。 iii: 我们会系统地评估合成和真实数据集的方法。 我们的方法在视觉保真度和3D一致性方面与最先进的方法相比,同时推广到高空间分辨率。 我们考虑3D感知图像合成 (3D …
RGL: A Graph-Centric, Modular Framework for Efficient Retrieval ...
6 天之前 · Recent advances in graph learning have paved the way for innovative retrieval-augmented generation (RAG) systems that leverage the inherent relational structures in graph data. However, many existing approaches suffer from rigid, fixed settings and significant engineering overhead, limiting their adaptability and scalability. Additionally, the RAG community has largely overlooked the decades ...
GitHub - autonomousvision/graf: Official code release for "GRAF ...
This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage instructions for training your own models and using pre-trained models below. If you find our code or paper useful, please consider citing.
从NeRF -> GRAF -> GIRAFFE,2021 CVPR Best Paper诞生记
受到NeRF的启发,GRAF设计了一种NeRF表示的条件变体,展示了如何从一组未设定pose的2D图像中学习出丰富的生成模型。 Generative Radiance Fields. GRAF的整体框架如图所示,和GAN类似 (GAN相关原理可以看我之前的文章 TransGAN),GRAF分成Generator和Discriminator两个部分。
[NIPS2020]GRAF: Generative Radiance Fields for 3D-Aware
2022年4月13日 · 主要的结构非常直观,就是一个标准的conditional GAN, 然后NeRF的部分就放在了 生成器 里面。 首先,生成器的输入就是相机的各种参数,包括了位置,方向,焦点,远近等等信息,这些参数都是完全随机的从一个均匀分布中取出来的。 然后输入光线采样器来确定光线的落点和光线的数量。 之后就分了两路输入条件辐射场: 1.沿着光线进行采样,确定需要采样点的位置。 然后将位置信息和随机采样的形状信息结合输入 神经网络,学出一个形状表示。 形状表示 …
Graphing Calculator - Desmos
Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more.
大规模图计算Giraph/GraphLab/GraphX/Gelly等开源图计算框架的 …
Giraph 是 Google 于 2010 年发布的论文 Pregel: a system for large-scale graph processing 的开源实现。Giraph 是以 Hadoop 为基础开发的上层应用,其系统架构和计算模型与 Pregel 保持了一致。同时也在 Pregel 模型上增加了一些新的特性,如:out-of-core computation、edge-oriented input …
lh3/minigraph: Sequence-to-graph mapper and graph generator - GitHub
Minigraph is a sequence-to-graph mapper and graph constructor. For graph generation, it aligns a query sequence against a sequence graph and incrementally augments an existing graph with long query subsequences diverged from the graph.
- 某些结果已被删除