
[2405.16506] GRAG: Graph Retrieval-Augmented Generation
2024年5月26日 · To overcome this limitation, we introduce Graph Retrieval-Augmented Generation (GRAG), which tackles the fundamental challenges in retrieving textual subgraphs and integrating the joint textual and topological information into Large Language Models (LLMs) to enhance its generation.
【学习笔记】GRAG: Graph Retrieval-Augmented Generation
2024年11月23日 · 为了解决这一问题,作者引入了图检索增强生成(grag),它通过强调子图结构的重要性显著提升了检索和生成过程。与仅专注于基于文本实体检索的rag方法不同,grag高度重视图拓扑结构,这对于生成上下文和事实连贯的响应至关重要。
GRAG: Graph Retrieval-Augmented Generation - arXiv.org
2024年5月26日 · We formulate the problem of Graph Retrieval-Augmented Generation (GRAG) and propose an efficient computational framework for GRAG, addressing the limitations of RAG methods in handling graph-based contexts.
GitHub - arjbingly/grag: GRAG is a simple python package that …
GRAG is a simple python package that provides an easy end-to-end solution for implementing Retrieval Augmented Generation (RAG). The package offers an easy way for running various LLMs locally, Thanks to LlamaCpp and also supports vector stores like Chroma and DeepLake.
GitHub - Joshua-Yu/gragstack: RAGG - Retrieval Augmented …
GRAG - Graph Retrieval Augmented Generation. GRAGStack: The Framework to Unleash the Power of Knowledge with Large Language Models. 🚀 Introducing GRAGStack 🚀. Experience an unparalleled leap in open-source intelligence platforms: GRAGStack!
GRAG: Graph Retrieval-Augmented Generation — 新溪-gordon …
GRAG 的核心工作流程——检索文本子图,然后进行软剪枝——有效地识别相关子图结构,同时避免穷举子图搜索典型的计算不可行性,这是 NP 困难的。 此外,我们提出了一种新颖的提示策略,可以实现从文本子图到分层文本描述的无损转换。 图多跳推理基准的大量实验表明,在需要对文本图进行多跳推理的场景中,我们的 GRAG 方法显着优于当前最先进的 RAG 方法,同时有效减轻幻觉。 GRAG 检索与查询相关的子图,而不是像 RAG 那样的离散文档,以减少语义相似但 …
Welcome to GraphRAG - GitHub Pages
GraphRAG is a structured, hierarchical approach to Retrieval Augmented Generation (RAG), as opposed to naive semantic-search approaches using plain text snippets.
GRAG: Graph Retrieval-Augmented Generation - bohrium.dp.tech
2024年10月21日 · We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG.
一文看懂GraphRAG:蚂蚁集团联合各所名校出品GraphRAG综述
2024年8月25日 · 图检索增强生成(GraphRAG)作为创新的解决方案出现,可以用来解决以上传统RAG的困局。 与传统的 RAG 不同,GraphRAG 从预先构建的图数据库中检索与给定查询相关且包含关系知识的图元素,如上图所示。 这些元素可能包括节点、三元组、路径或子图。 GraphRAG 考虑了文本之间的联系,能够更准确、更全面地检索关系信息。 此外,图数据,如知识图,对文本数据进行了抽象和总结,大幅缩短了输入文本的长度,减少了冗长的问题。 通 …
How to Query a Knowledge Graph with LLMs Using gRAG
2024年11月7日 · They’re the technology behind many modern search engines, Retrieval-Augmented Generation (RAG) systems for Large Language Models (LLMs), and various query tools. But what exactly are Knowledge Graphs, and why are they so integral to these technologies? Let’s delve into it.