
LDA数学八卦索引及全文文档 - 知乎 - 知乎专栏
2019年2月22日 · 《LDA数学八卦》大概于2013年发表在我爱自然语言处理博客上,是我的前腾讯Leader rickjin的作品,应该也是目前中文互联网上介绍LDA最好的材料之一;该系列大概在2015年被搬运到公众号上,不过那个时候关注AINLP公众号的同学还不多,所以这里做个索引: LDA数学 ...
Linear Discriminant Analysis in Machine Learning
2025年2月10日 · Linear Discriminant Analysis (LDA) also known as Normal Discriminant Analysis is supervised classification problem that helps separate two or more classes by converting higher-dimensional data space into a lower-dimensional space. It is used to identify a linear combination of features that best separates classes within a dataset.
Linear discriminant analysis - Wikipedia
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of
Linear Discriminant Analysis (LDA) — STATS 202 - Stanford …
LDA: multivariate normal with equal covariance# LDA is the special case of the above strategy when \(P(X \mid Y=k) = N(\mu_k, \mathbf\Sigma)\) . That is, within each class the features have multivariate normal distribution with center depending on the class and common covariance \(\mathbf\Sigma\) .
线性判别分析(Linear Discriminant Analysis, LDA)详解 - CSDN博客
2025年1月1日 · 线性判别式分析(Linear Discriminant Analysis, LDA)是一种经典的统计方法,常用于特征降维和分类问题。在机器学习领域,LDA通过最大化类间距离与类内距离的比值,来寻找能够最好区分不同类别的新特征空间。MATLAB...
LDA(Linear Discriminant Analysis)的原理详解 - CSDN博客
lda的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。 什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。
经典机器学习系列之【线性判别分析LDA】 - 知乎专栏
线性判别分析,英文名称Linear Discriminant Analysis (LDA)是一种经典的线性学习方法。 本文针对二分类问题,从直观理解,对其数学建模,之后模型求解,再拓展到多分类问题。 给定训练样例集,设法将样例投影到一条直线上,使得 同类样例的投影点尽可能接近 、 异类样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点的位置来确定新样本的类别。 道理是这么个道理,我们现在需要在数学上对其进行分析。 我们接下来先建立求 …
LinearDiscriminantAnalysis(LDA) Datarepresentationvsdataclassification PCA aims to find the most accurate data representation in a lower dimen-
How to Perform Linear Discriminant Analysis? - Baeldung
2025年2月28日 · In this section, we will present a numerical example explaining how to calculate the LDA space step by step and how LDA is used to discriminate two different classes of data using the class-independent and class-dependent approach.
(sum of square differences between the projected samples and their class mean). measures the variability within class ωi after projecting it on the y-space. two classes at hand after projection, hence it is called within-class scatter of the projected samples.