
LLM-BRAIn: AI-driven Fast Generation of Robot Behaviour Tree …
2023年5月30日 · LLM-BRAIn is a transformer-based Large Language Model (LLM) fine-tuned from Stanford Alpaca 7B model to generate robot behavior tree (BT) from the text description. We train the LLM-BRAIn on 8,5k instruction-following demonstrations, generated in the style of self-instruct using text-davinchi-003.
LLM as A Robotic Brain: Unifying Egocentric Memory and Control
2023年4月19日 · In this paper, we propose a novel and generalizable framework called LLM-Brain: using Large-scale Language Model as a robotic brain to unify egocentric memory and control. The LLM-Brain framework integrates multiple multimodal language models for robotic tasks, utilizing a zero-shot learning approach.
ArtemLykov/LLM_BRAIn_dataset · Datasets at Hugging Face
This paper introduces a pioneering methodology in autonomous robot control, denoted as LLM-BRAIn, enabling the generation of adaptive behaviors in robots in response to operator commands, while simultaneously considering a multitude of potential future events.
LLM作为机器人的大脑:统一自我中心的记忆和控制 - 智源社区
2023年4月20日 · 关键思路:该论文提出了一种新颖且可推广的框架——LLM-Brain,将大规模语言模型用作机器人的大脑,以统一自我中心记忆和控制。 该框架使用多模态语言模型来完成机器人任务,采用零-shot学习方法。 LLM-Brain中的所有组件都使用自然语言进行闭环多轮对话,包括感知、规划、控制和记忆。 该系统的核心是一个具有实体化的LLM,用于维护自我中心记忆和控制机器人。 该论文的思路相较于当前领域的研究状况有新意。 其他亮点:该论文采用了两个下游任 …
[PDF] LLM-BRAIn: AI-driven Fast Generation of Robot Behaviour …
This paper introduces a pioneering methodology in autonomous robot control, denoted as LLM-BRAIn, enabling the generation of adaptive behaviors in robots in response to operator commands, while simultaneously considering a multitude of potential future events.
Papers with Code - LLM-BRAIn: AI-driven Fast Generation of …
This paper presents a novel approach in autonomous robot control, named LLM-BRAIn, that makes possible robot behavior generation, based on operator's commands. LLM-BRAIn is a transformer-based Large Language Model (LLM) fine-tuned from Stanford Alpaca 7B model to generate robot behavior tree (BT) from the text description.
LLM as A Robotic Brain: Unifying Egocentric Memory and Control
2023年4月28日 · 5.在两个下游任务上验证了LLM-Brain:active exploration、embodied question answering。 前者要机器人在限定步数内剧烈探索未知环境;后者回答在从探索的图像观测中产生的问题. 1.Unified methods想要去训一个大网络,这个大网络能够完成多种具身ai任务。 1.提出了基于zero-shot 的多模态框架,能够完成 多任务,具有普适性。 系统的各个部位用自然语言相互交流,形成了一个闭环,从而进行决策、控制、存储。 这种. 摘要 1.具身人工智能需要具备存储 …
LLM-BRAIn:AI驱动的基于大语言模型的机器人行为树快速生 …
2023年5月30日 · 本文介绍了一种名为 LLM-BRAIn 的自主机器人控制的新方法,它可以根据操作员的命令生成机器人行为。 LLM-BRAIn 是一种基于 Transformer 的大型语言模型 (LLM),它从 Stanford Alpaca 7B 模型进行微调,以根据文本描述生成机器人行为树 (BT)。
Driving and suppressing the human language network using large …
2024年1月3日 · We developed an encoding model of the left hemisphere (LH) language network in the human brain with the goal of identifying new sentences that would activate the language network to a maximal or...
LLM-Brain: LLM as A Robotic Brain: Unifying Egocentric Memory …
LLM-brain is a multi-LLM pipline that acts as a robotic brain to unify ecocentric memory and control. The multiple agents communicate by natural language, provideing excellenet explanability.
- 某些结果已被删除