
Mo LI 李默 | HKUST School of Engineering
Prof. Mo Li is a Professor at the Department of Computer Science and Engineering, the Hong Kong University of Science and Technology (HKUST). Before joining HKUST in 2023, he was a Professor at Nanyang Technological University. Prof. Li has been internationally recognized for his research in wireless and mobile computing.
Mo Li - Google Scholar
Proceedings of the 20th annual international conference on Mobile computing … How long to wait?: Predicting bus arrival time with mobile phone based participatory sensing. Proceedings of the 10th...
Mo LI | HKUST CSE
Prof. Mo Li is a Professor at the Department of Computer Science and Engineering, the Hong Kong University of Science and Technology (HKUST). Before joining HKUST in 2023, he was a Professor at Nanyang Technological University. Prof. Li has been internationally recognized for his research in wireless and mobile computing.
Faculty Profiles - LI Mo | The Hong Kong University of Science and ...
Faculty Profiles serves as a directory for the university community and the external stakeholders to better understand our faculty.
李默(南洋理工大学计算机工程学院教授)_百度百科
李默(Mo Li),男,IEEE Fellow,毕业于清华大学、香港科技大学,现任南洋理工大学计算机工程学院教授。 研究兴趣包括移动与无线计算、网络化传感系统、smart city and urban computing。
Mo Li - Google 学术搜索 - Google Scholar
Regeneration function analysis of GmESR1 in transgenic soybean.
LI Xun-武汉大学经济与管理学院 - whu.edu.cn
2025年3月21日 · Li Xun. Associate Professor. Department of Mathematical Economics and Mathematical Finance. Email: [email protected]. Phone : +86-27-68755339. PhD, Economics, University of Connecticut, USA...
Dr. Li Xun Research interests include: • Stochastic Controls • Mean- Field Forward- Backward Systems • Time- Inconsistency Control Problems with Financial Applications On-going GRF project Selling Financial Assets at the Best Time Abstract: A primary decision-making problem in financial investment practice is to determine the best time to ...
Llama模型家族训练奖励模型Reward Model技术及代码实战(一)
2025年1月14日 · 利用人类反馈对大型语言模型进行微调的一种流行技术,称为基于人类反馈的强化学习,简称 RLHF。 RLHF 中的 LLM 权重更新由用户对 LLM 生成的完成给予的奖励(反馈)驱动。 确定奖励是一项复杂的任务。 一种方法是让人类根据某些对齐指标评估模型的所有完成情况,例如确定输出是否有用。 此反馈是一个缩放量。 然后迭代更新 LLM 权重,以最大化从人类分类器获得的奖励。 获取人工反馈既耗时又费钱。 作为一种解决方法,可以训练另一个称为奖励 …
外来入侵植物管理与控制成效的制约因素 - cje.net.cn
XU Guang-yao1, LI Hong-yuan1*, MO Xun-qiang2, MENG Wei-qing2 . 摘要: 外来植物入侵对全球生态系统构成严重威胁,尽管入侵植物的管理与控制取得了一定进展,但要恢复被入侵生态系统、完成管控目标仍存在问题。 本文对入侵植物管控成效的制约因素进行了综述,发现入侵植物管控过程中存在以下问题:(1)预防为主的管理原则不完全适用入侵管理;(2)入侵植物管理存在缺乏公众支持、生态责任主体单一及多头管理等缺陷;(3)入侵植物管理目标与社会管理目标 …
- 某些结果已被删除