
[2110.07875] Graph Neural Networks with Learnable Structural and ...
2021年10月15日 · We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected …
如何设计可学习的GNN位置编码? - 知乎专栏
本文提出解耦位置和结构信息,以方便网络学习这两种关键的信息。本文引入一个新的结构,叫LSPE(Learnable Structural and Positional Encodings)。本文研究了LSPE在一些稀疏GNN和 …
GitHub - vijaydwivedi75/gnn-lspe: Source code for GNN-LSPE …
The architecture, named MPGNNs-LSPE (MPGNNs with Learnable Structural and Positional Encodings), is generic that it can be applied to any GNN model of interest which fits into the …
GNN-LSPE 项目安装与使用指南 - CSDN博客
2024年9月12日 · GNN-LSPE(Graph Neural Networks with Learnable Structural and Positional Representations)是一个用于图神经网络(GNN)的开源项目,旨在通过引入可学习的结构 …
探索图神经网络的新边界:学习结构与位置表示的分离-CSDN博客
2024年6月9日 · MPGNNs-LSPE 是一种通用的GNN模型,它可以应用于任何基于消息传递框架的GNN变体,包括Transformer。 这一设计理念的核心是,分别学习节点之间的结构关系和它们 …
Graph Neural Networks with Learnable Structural and Positional ...
2021年11月17日 · 来自Bengio组,在GNN上引入位置编码,提出了一种新的框架LSPE,在分子数据集上的性能提升了2.87%至64.14%。 GNN大多是基于消息传递机制,通过聚合邻居的信息 …
爱可可AI前沿推介(10.21) - 智源社区 - baai.ac.cn
2021年10月21日 · We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected …
Graph Neural Networks with Learnable Structural and Positional ...
We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected (Transformer-like) …
gnn-lspe/docs/02_download_datasets.md at main - GitHub
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations), ICLR 2022 - vijaydwivedi75/gnn-lspe
A Simple yet Effective Learnable Positional Encoding Method for ...
3 天之前 · This paper proposes a simple and effective positional encoding method, learnable sinusoidal positional encoding (LSPE), by building a learnable sinusoidal positional encoding …
- 某些结果已被删除