
PR Structured Ⅴ:GraphRNN——将图生成问题转化为序列生成
GraphRNN 可以视作一种级联形式,由两个RNN组成: edge-level RNN:为新生成的节点生成新的边。 Key Idea: 将不同节点顺序下的图表示为序列,并在这些序列上构建一个自回归的生 …
[1802.08773] GraphRNN: Generating Realistic Graphs with Deep …
2018年2月24日 · Our experiments show that GraphRNN significantly outperforms all baselines, learning to generate diverse graphs that match the structural characteristics of a target set, …
GraphRNN models a graph in an autoregressive (or recurrent) manner—as a sequence of additions of new nodes and edges—to capture the complex joint probability of all nodes and …
GraphRNN: Generating Realistic Graphs with Deep Auto ... - CSDN …
GraphRNN以自回归(或递归)的方式对图进行建模,来捕捉图中所有节点和边的复杂联合概率。特别的是,GraphRNN可以被看做是一个分层模型,其中一个图级的RNN保持图的状态并生成 …
GraphRNN: Generating Realistic Graphs with Deep Auto ... - GitHub
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models - JiaxuanYou/graph-generation
图神经网络 之 GNN与RNN - kkkshiki - 博客园
2021年11月18日 · 在序列的演进方向进行 递归 (recursion)且所有节点(循环单元)按链式连接的 递归神经网络 (recursive neural network)。 基础的神经网络包含输入层、隐层、输出 …
Overview of GraphRNN, algorithms and implementation examples
2024年12月12日 · GraphRNN is a deep learning model that specialises in graph generation and is particularly good at learning the structure of a graph and generating new graphs. The model …
CS224W 图机器学习 自学笔记10 - GraphRNN - 知乎 - 知乎专栏
这是CS224W Machine Learning with Graph学习笔记第10篇 - GraphRNN。 本文主要介绍GraphRNN的基本原理。Tips:由于图生成模型的学习难度略大,小李同学白天做项目,晚上 …
Lecture 11 – Graph Neural Networks - University of Pennsylvania
In this lecture, we explore an application of GRNNs – an epidemic modeling – and compare them with GNNs and RNNs. To model the epidemic we will use a real-world dataset of a highschool …
GraphRNN: Generating Realistic Graphs with Deep Auto …
GraphRNN learns to generate graphs by training on a representative set of graphs and decomposes the graph generation process into a sequence of node and edge formations, …