
oxwhirl/smac: SMAC: The StarCraft Multi-Agent Challenge - GitHub
2010年2月4日 · We make use of special RL units which never automatically start attacking the enemy. Here is the step-by-step guide on how to create new RL units based on existing SC2 units, Add the map information in smac_maps.py, The newly designed RL units have new ids which need to be handled in starcraft2.py.
星际争霸2 -- SMAC 环境介绍 - 知乎 - 知乎专栏
SMAC 是一个用于在暴雪星际争霸2上进行多智能体协同强化学习(MARL)的环境。 为智能体与星际争霸2的交互提供了友好的接口,方便开发者观察和执行行动。 专注于分散的微观操作方案,其中游戏的每个智能体均由单独的 RL agent控制。 库. 安装主要包括两部分: 因为SMAC是基于星际争霸游戏引擎的,所以我们还需要安装StarCraft II,官方指定的版本为SC2.4.10,并且不同版本之间的算法性能测试不一样。 对于 Linux. export SC2PATH=<sc2/installation/path> 命令将 …
[1902.04043] The StarCraft Multi-Agent Challenge - arXiv.org
2019年2月11日 · In this paper, we propose the StarCraft Multi-Agent Challenge (SMAC) as a benchmark problem to fill this gap. SMAC is based on the popular real-time strategy game StarCraft II and focuses on micromanagement challenges where each unit is controlled by an independent agent that must act based on local observations.
多智能体强化学习实验总结-基于SMAC - 知乎 - 知乎专栏
SMAC是 WhiRL 的环境,用于基于暴雪的《星际争霸II》 RTS游戏进行协作式多主体强化学习(MARL)研究。 SMAC利用暴雪的 StarCraft II 机器学习API和 DeepMind 的 PySC2,为自治代理与StarCraft II交互,获取观察和执行动作提供了便捷的界面。 与PySC2不同,SMAC专注于 分散的微观操作方案,其中游戏的 每个单元均由单独的RL代理商控制。 在战斗中,适当的微单位数量可以最大程度地增加对敌方单位的伤害,同时使所受到的伤害最小化,并且需要一系列技能。 …
SMAC — DI-engine 0.1.0 文档 - Read the Docs
smac 是一个用于在暴雪星际争霸2上进行多智能体协同强化学习(marl)的环境。 SMAC 用了暴雪星际争霸2 的机器学习 API 和 DeepMind 的PySC2 为智能体与星际争霸2的交互提供了友好的接口,方便开发者观察和执行行动。
SMAC Dataset - Papers With Code
SMAC is built using the StarCraft II game engine, creating a testbed for research in cooperative MARL where each game unit is an independent RL agent. The StarCraft Multi-Agent Challenge (SMAC) is a benchmark that provides elements of partial observability, challenging dynamics, and high-dimensional observation spaces.
oxwhirl/smacv2 - GitHub
SMACv2 is an update to Whirl’s Starcraft Multi-Agent Challenge, which is a benchmark for research in the field of cooperative multi-agent reinforcement learning. SMAC and SMACv2 both focus on decentralised micromanagement scenarios in StarCraft II, rather than the full game.
The StarCraft Multi-Agent Challenge (SMAC) - 知乎 - 知乎专栏
smac是离散动作空间的环境; 每一帧可执行的动作包含: 攻击【敌军id】(如果是医疗运输舰就是治疗) 移动【东/南/西/北】(只能攻击射击范围内的地方单位) 停止; 无动作(只有死亡的单位才能执行这个动作)
【MARL】多智能强化学习测试环境:SMAC、MPE、PettingZoo等_smac …
2024年9月12日 · 以下是一些常用的多智能体强化学习环境,它们涵盖了多种任务类型,如协作、对抗、竞争等,帮助研究者验证算法的效果。SMAC(StarCraft Multi-Agent Challenge)、 MPE(Multi-Agent Particle Environment)、PettingZoo等_smac环境
smac/docs/smac.md at master · oxwhirl/smac - GitHub
This is a competitive task where a centralised RL agent receives RGB pixels as input and performs both macro and micro with the player-level control similar to human players. SMAC, on the other hand, represents a set of cooperative multi-agent micro challenges where each learning agent controls a single military unit. SMAC uses the raw API of ...