
VAE-TCN hybrid model for KPI Anomaly Detection - IEEE Xplore
To this end, we propose a novel approach based on VAE-TCN hybrid model. Our model uses VAE (variational automatic coder) to learn robust local features in a short window, and uses TCN (temporal convolution network) to estimate the long-term correlation in the sequence based on the features inferred by VAE module.
VAE系解纠缠:从VAE到βVAE,再到β-TCVAE - 知乎 - 知乎专栏
VAE是将概率图模型的思想和AE(Auto Encoder)的结合体。 看左图的一个概率图模型,假设有一个已知的先验分布p(z),和能观察到的数据x。 我们想要推断后验分布p(z|x),他的计算公式就是下面这个贝叶斯公式。
Unsupervised Anomaly Detection Method for Bearing Based on VAE …
2023年10月26日 · In the proposed temporal convolutional variational autoencoder—generative adversarial networks (TCVAE-GAN) model, the temporal convolutional network (TCN) module is incorporated into the encoder, decoder, and discriminator to improve the reconstruction and feature extraction capabilities of time-series data.
Temporal convolutional autoencoder for unsupervised anomaly detection ...
2021年11月1日 · Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of …
AIOps探索:基于VAE模型的周期性KPI异常检测方法 - 知乎
基于Dount论文的学习,本文将介绍如何使用Keras库,实现基于VAE模型的周期性KPI异常检测方法,包括其思路、原理与代码实现,帮助大家理解这个方法。 在AI in All的时代,工业界中的运维领域提出了:智能运维(AIOps, Artificial Intelligence for IT Operations)这个概念,即采用机器学习、数据挖掘或深度学习等方法,来解决KPI异常检测、故障根因分析、容量预测等运维领域中的关键问题。 其中KPI异常检测是在运维领域中非常重要的一个环节。 KPI(key performance …
Research on equipment health prediction technology based …
2021年1月1日 · Edge computing extracts effective information at the edge as the input of the prediction model, which greatly reduces the delay of network requests and the load on the cloud. VAE-TCN uses VAE for feature extraction, and TCN mines the mapping relationship between degradation information and remaining life in long sequences.
Multivariate time series anomaly detection with variational …
2024年7月1日 · To test the effectiveness of the VSAD proposed in this paper, we experimentally compare seven state-of-the-art anomaly detection algorithms in the field of MTS anomaly detection, which include TCN-based, graph neural network-based and VAE-based, etc.
[2402.02820] Revisiting VAE for Unsupervised Time Series …
2024年2月5日 · Variational Autoencoders (VAEs) have gained popularity in recent decades due to their superior de-noising capabilities, which are useful for anomaly detection. However, our study reveals that VAE-based methods face challenges in capturing long-periodic heterogeneous patterns and detailed short-periodic trends simultaneously.
融合Bi-TCN和对抗VAE的KPI异常检测方法-专利-万方数据知识服务 …
摘要: 本发明公开了一种融合Bi‑TCN和对抗VAE的KPI异常检测方法。 该方法包括:S1、数据预处理;S2、模型初始化,对模型参数进行随机初始化赋值,对参数进行设置;S3、模型训练;S4、模型测试,对测试进行相同的数据处理,输入训练好的模型获得重构误差,使用自动阈值方法产生的阈值来判定是否异常。 本发明使用变分自编码进行对抗训练,VAE对于噪声和异常值更具有鲁棒性,对抗训练可以更高效放大包含异常的输入的重构误差以区分正常KPI数据和异 …
融合Bi-TCN和对抗VAE的KPI异常检测方法 - X技术网
2023年8月4日 · kpi-tsad利用变分自编码器 (vae)过采样模型解决数据不平衡问题,并基于卷积和lstm网络的深度模型进行预测。 buzz基于vae对抗训练的非监督模型对于复杂kpi数据进行异常检测。 omnianomaly基于随机循环网络的多元时间序列鲁棒异常检测。 tadgan基于生成网络和lstm递归网络的无监督异常检测方法。 技术实现思路. 1、为了能够使计算机进行自动、高效、准确地进行kpi异常检测,现有的kpi异常检测方法中还有一些问题亟待解决。 本发明旨在解决以下问题: …