
[2403.15836] VLM-CPL: Consensus Pseudo Labels from Vision …
2024年3月23日 · To address this issue, we introduce VLM-CPL, a novel approach based on consensus pseudo labels that integrates two noisy label filtering techniques with a semi …
Tuning Vision-Language Models with Candidate Labels by Prompt …
2024年7月11日 · Vision-language models (VLMs) can learn high-quality representations from a large-scale training dataset of image-text pairs. Prompt learning is a popular approach to fine …
[2403.05346] VLM-PL: Advanced Pseudo Labeling Approach for …
2024年3月8日 · In the field of Class Incremental Object Detection (CIOD), creating models that can continuously learn like humans is a major challenge. Pseudo-labeling methods, although …
ECALP:免训练的零/少样本VLM标签传播方法 - 知乎
Label Propagation:一种基于图的 标签传播 方法,能够在标签有限的情况下进行有效的学习,但在处理大规模数据集时计算复杂度高。 研究方法 这篇论文提出了一种基于图的方法,用 …
GitHub - jingyi0000/VLM_survey: Collection of AWESOME vision …
2024年11月26日 · This is the repository of Vision Language Models for Vision Tasks: a Survey, a systematic survey of VLM studies in various visual recognition tasks including image …
【2024】VLM-CPL:无注释的病理图像分类!来自视觉语言模型的共识伪标签_vlm …
2024年3月27日 · 为了应对这一挑战,我们引入了VLM-CPL(Consensus Pseudo Labels from Vision-Language Models),一种基于共识伪标签的新方法,该方法结合了两种噪声标签过滤 …
Negative Label Guided OOD Detection with Pretrained Vision ... - GitHub
We design a novel scheme for the OOD score collaborated with negative labels. Theoretical analysis helps to understand the mechanism of negative labels. Extensive experiments …
GitHub - yufeiwang63/RL-VLM-F: Code for Reinforcement …
The commands in run.sh will by default load the cached preference labels; you can use cached_label_path=None to not use the cached labels and query the VLM online during …
Papers with Code - VLM-CPL: Consensus Pseudo Labels from …
To address this issue, we introduce VLM-CPL, a novel approach based on consensus pseudo labels that integrates two noisy label filtering techniques with a semi-supervised learning …
OLA-VLM | 基于嵌入优化的MLLM视觉增强 - 知乎 - 知乎专栏
OLA-VLM 仅在 inference 期间使用单个 visual encoder 就实现了这些结果,使其比多编码器系统效率高得多。 为了进一步验证其有效性,研究人员分析了 OLA-VLM 学习到的表示。 Probing …
- 某些结果已被删除